
dglke Documentation
Release 0.1.0

dgl-team

Aug 26, 2020

Contents

1 Performance and Scalability 3

2 Get started with DGL-KE! 5
2.1 Installation Guide . 5
2.2 Introduction to Knowledge Graph Embedding . 6
2.3 DGL-KE Command Lines . 17
2.4 Benchmarks on Built-in Knowledage Graphs . 42

i

ii

dglke Documentation, Release 0.1.0

Knowledge graphs (KGs) are data structures that store information about different entities (nodes) and their relations
(edges). A common approach of using KGs in various machine learning tasks is to compute knowledge graph embed-
dings. DGL-KE is a high performance, easy-to-use, and scalable package for learning large-scale knowledge graph
embeddings. The package is implemented on the top of Deep Graph Library (DGL) and developers can run DGL-KE
on CPU machine, GPU machine, as well as clusters with a set of popular models, including TransE, TransR, RESCAL,
DistMult, ComplEx, and RotatE.

Contents 1

https://www.dgl.ai/
https://www.utc.fr/~bordesan/dokuwiki/_media/en/transe_nips13.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/9571
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.2015&rep=rep1&type=pdf
https://arxiv.org/abs/1412.6575
http://proceedings.mlr.press/v48/trouillon16.pdf
https://arxiv.org/pdf/1902.10197.pdf

dglke Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Performance and Scalability

DGL-KE is designed for learning at scale. It introduces various novel optimizations that accelerate training on knowl-
edge graphs with millions of nodes and billions of edges. Our benchmark on knowledge graphs consisting of over
86M nodes and 338M edges shows that DGL-KE can compute embeddings in 100 minutes on an EC2 instance with 8
GPUs and 30 minutes on an EC2 cluster with 4 machines (48 cores/machine). These results represent a 2×5× speedup
over the best competing approaches.

DGL-KE vs Graphvite

DGL-KE vs Pytorch-Biggraph

3

dglke Documentation, Release 0.1.0

4 Chapter 1. Performance and Scalability

CHAPTER 2

Get started with DGL-KE!

2.1 Installation Guide

This topic explains how to install DGL-KE. We recommend installing DGL-KE by using pip and from the source.

2.1.1 System requirements

DGL-KE works with the following operating systems:

• Ubuntu 16.04 or higher version

• macOS x

DGL-KE requires Python version 3.5 or later. Python 3.4 or earlier is not tested. Python 2 support is coming.

DGL-KE supports multiple tensor libraries as backends, e.g., PyTorch and MXNet. For requirements on backends and
how to select one, see Working with different backends. As a demo, we install Pytorch using pip:

sudo pip3 install torch

2.1.2 Install DGL

DGL-KE is implemented on the top of DGL (0.4.3 version). You can install DGL using pip:

sudo pip3 install dgl==0.4.3

2.1.3 Install DGL-KE

After installing DGL, you can install DGL-KE. The fastest way to install DGL-KE is by using pip:

5

dglke Documentation, Release 0.1.0

sudo pip3 install dglke

or you can install DGL-KE from source:

git clone https://github.com/awslabs/dgl-ke.git
cd dgl-ke/python
sudo python3 setup.py install

2.1.4 Have a Quick Test

Once you install DGL-KE successfully, you can test it by the following command:

create a new workspace
mkdir my_task && cd my_task
Train transE model on FB15k dataset
DGLBACKEND=pytorch dglke_train --model_name TransE_l2 --dataset FB15k --batch_size
→˓1000 \
--neg_sample_size 200 --hidden_dim 400 --gamma 19.9 --lr 0.25 --max_step 500 --log_
→˓interval 100 \
--batch_size_eval 16 -adv --regularization_coef 1.00E-09 --test --num_thread 1 --num_
→˓proc 8

This command will download the FB15k dataset, train the transE model on that, and save the trained embeddings
into the file. You could see the following output at the end:

-------------- Test result --------------
Test average MRR : 0.47221913961451095
Test average MR : 58.68289854581774
Test average HITS@1 : 0.2784276548560207
Test average HITS@3 : 0.6244265375564998
Test average HITS@10 : 0.7726295474936941

2.2 Introduction to Knowledge Graph Embedding

Knowledge Graphs (KGs) have emerged as an effective way to integrate disparate data sources and model underlying
relationships for applications such as search. At Amazon, we use KGs to represent the hierarchical relationships
among products; the relationships between creators and content on Amazon Music and Prime Video; and information
for Alexa’s question-answering service. Information extracted from KGs in the form of embeddings is used to improve
search, recommend products, and infer missing information.

2.2.1 What is a graph

A graph is a structure used to represent things and their relations. It is made of two sets - the set of nodes (also called
vertices) and the set of edges (also called arcs). Each edge itself connects a pair of nodes indicating that there is a
relation between them. This relation can either be undirected, e.g., capturing symmetric relations between nodes, or
directed, capturing asymmetric relations. For example, if a graph is used to model the friendship relations of people in
a social network, then the edges will be undirected as they are used to indicate that two people are friends; however,
if the graph is used to model how people follow each other on Twitter, the edges will be directed. Depending on the
edges’ directionality, a graph can be directed or undirected.

6 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

Graphs can be either homogeneous or heterogeneous. In a homogeneous graph, all the nodes represent instances of the
same type and all the edges represent relations of the same type. For instance, a social network is a graph consisting
of people and their connections, all representing the same entity type. In contrast, in a heterogeneous graph, the nodes
and edges can be of different types. For instance, the graph for encoding the information in a marketplace will have
buyer, seller, and product nodes that are connected via wants-to-buy, has-bought, is-customer-of, and is-selling edges.

Finally, another class of graphs that is especially important for knowledge graphs are multigraphs. These are graphs
that can have multiple (directed) edges between the same pair of nodes and can also contain loops. These multiple
edges are typically of different types and as such most multigraphs are heterogeneous. Note that graphs that do not
allow these multiple edges and self-loops are called simple graphs.

2.2.2 What is a Knowledge Graph

In the earlier marketplace graph example, the labels assigned to the different node types (buyer, seller, product) and the
different relation types (wants-to-buy, has-bought, is-customer-of, is-selling) convey precise information (often called
semantics) about what the nodes and relations represent for that particular domain. Once this graph is populated, it
will encode the knowledge that we have about that marketplace as it relates to types of nodes and relations included.
Such a graph is an example of a knowledge graph.

A knowledge graph (KG) is a directed heterogeneous multigraph whose node and relation types have domain-specific
semantics. KGs allow us to encode the knowledge into a form that is human interpretable and amenable to automated
analysis and inference. KGs are becoming a popular approach to represent diverse types of information in the form of
different types of entities connected via different types of relations.

When working with KGs, we adopt a different terminology than the traditional vertices and edges used in graphs.
The vertices of the knowledge graph are often called entities and the directed edges are often called triplets and are
represented as a (h, r, t) tuple, where h is the head entity, t is the tail entity, and r is the relation associating the head with
the tail entities. Note that the term relation here refers to the type of the relation (e.g., one of wants-to-buy, has-bought,
is-customer-of, and is-selling).

Let us examine a directed multigraph in an example, which includes a cast of characters and the world in which they
live.

Scenario:

Mary and Tom are *siblings* and they both are *are vegetarians*, who *like* potatoes and cheese. Mary and Tom
both *work* at Amazon. Joe is a bloke who is a *colleague* of Tom. To make the matter complicated, Joe *loves*
Mary, but we do not know if the feeling is reciprocated.

Joe *is from* Quebec and is proud of his native dish of Poutine, which is *composed* of potato, cheese, and gravy.
We also know that gravy *contains* meat in some form.

Joe is excited to invite Tom for dinner and has sneakily included his sibling, Mary, in the invitation. His plans are
doomed from get go as he is planning to serve the vegetarian siblings his favourite Quebecois dish, Poutine.

Oh! by the way, a piece of geography trivia: Quebec *is located* in a province of the same name which in turn *is
located* in Canada.

There are several relationships in this scenario that are not explicitly mentioned but we can simply infer from what we
are given:

• Mary is a colleague of Tom.

• Tom is a colleague of Mary.

• Mary is Tom’s sister.

• Tom is Mary’s brother.

• Poutine has meat.

2.2. Introduction to Knowledge Graph Embedding 7

dglke Documentation, Release 0.1.0

• Poutine is not a vegetarian dish.

• Mary and Tom would not eat Poutine.

• Poutine is a Canadian dish.

• Joe is Canadian.

• Amazon is a workplace for Mary, Tom, and Joe.

There are also some interesting negative conclusions that seem intuitive to us, but not to the machine: - Potato does not
like Mary. - Canada is not from Joe. - Canada is not located in Quebec. - . . . What we have examined is a knowledge
graph, a set of nodes with different types of relations: - 1-to-1: Mary is a sibling of Tom. - 1-to-N: Amazon is a
workplace for Mary, Tom, and Joe. - N-to-1: Joe, Tom, and Mary work at Amazon. - N-to-N: Joe, Mary, and Tom are
colleagues.

There are other categorization perspectives on the relationships as well: - Symmetric: Joe is a colleague of Tom entails
Tom is also a colleague of Joe. - Antisymmetric: Quebec is located in Canada entails that Canada cannot be located
in Quebec.

Figure 1 visualizes a knowledge-base that describes World of Mary. For more information on how to use the examples,
please refer to the code that draws the examples.

2.2.3 What is the task of Knowledge Graph Embedding?

Knowledge graph embedding is the task of completing the knowledge graphs by probabilistically inferring the missing
arcs from the existing graph structure. KGE differs from ordinary relation inference as the information in a knowledge
graph is multi-relational and more complex to model and computationally expensive. For this rest of this blog, we
examine fundamentals of KGE.

8 Chapter 2. Get started with DGL-KE!

https://github.com/cyrusmvahid/GNNTrainingMaterial/blob/master/March2020/supportingexamples/examples.py

dglke Documentation, Release 0.1.0

2.2.4 Common connectivity patterns:

Different connectivity or relational pattern are commonly observed in KGs. A Knowledge Graph Embedding model
intends to predict missing connections that are often one of the types below.

• *symmetric*

• Definition: A relation 𝑟 is *symmetric* if ∀𝑥, 𝑦 : (𝑥, 𝑟, 𝑦) =⇒ (𝑦, 𝑟, 𝑥)

• Example: x=Mary and y=Tom and r="is a sibling of";
(𝑥, 𝑟, 𝑦) = Mary is a sibling of Tom =⇒ (𝑦, 𝑟, 𝑥) = Tom is a sibling of Mary

• *antisymmetric*

• Definition: A relation r is *antisymmetric* if ∀𝑥, 𝑦 : (𝑥, 𝑟, 𝑦) =⇒ ¬(𝑦, 𝑟, 𝑥)

• Example: x=Quebec and y=Canada and r="is located in";
(𝑥, 𝑟, 𝑦) = Quebec is located in Canada =⇒ (𝑦,¬𝑟, 𝑥) = Canada is not located in Quebec

• *inversion*

• Definition: A relation 𝑟1 is *inverse* to relation 𝑟2 if ∀𝑥, 𝑦 : 𝑟2(𝑥, 𝑦) =⇒ 𝑟1(𝑦, 𝑥).

• Example: 𝑥 = 𝑀𝑎𝑟𝑦, 𝑦 = 𝑇𝑜𝑚, 𝑟1 = "is a sister of” 𝑎𝑛𝑑𝑟2 = "is a brother of"
(𝑥, 𝑟1, 𝑦) = Mary is a sister of Tom =⇒ (𝑦, 𝑟2, 𝑥) = Tom is a brother of Mary

• *composition*

• Definition: relation 𝑟1 is composed of relation 𝑟2 and relation 𝑟3 if ∀𝑥, 𝑦, 𝑧 : (𝑥, 𝑟2, 𝑦) ∧ (𝑦, 𝑟3, 𝑧) =⇒
(𝑥, 𝑟1, 𝑧)

• Example: x=Tom, y=Quebec, z=Canada, 𝑟2 = "is born in", 𝑟3 = "is located in", 𝑟1 = "is from"
(𝑥, 𝑟2, 𝑦) = Tom is born in Quebec ∧ (𝑦, 𝑟3, 𝑧) = Quebec is located in Canada
=⇒ (𝑥, 𝑟1, 𝑧) = Tom is from Canada

ref: RotateE[2]

2.2.5 Score Function

There are different flavours of KGE that have been developed over the course of the past few years. What most of
them have in common is a score function. The score function measures how distant two nodes relative to its relation
type. As we are setting the stage to introduce the reader to DGL-KE, an open source knowledge graph embedding
library, we limit the scope only to those methods that are implemented by DGL-KE and are listed in Figure 2.

Figure2: A list of score functions for KE papers implemented by DGL-KE

2.2.6 A short explanation of the score functions

Knowledge graphs that are beyond toy examples are always large, high dimensional, and sparse. High dimensionality
and sparsity result from the amount of information that the KG holds that can be represented with 1-hot or n-hot
vectors. The fact that most of the items have no relationship with one another is another major contributor to sparsity
of KG representations. We, therefore, desire to project the sparse and high dimensional graph representation vector
space into a lower dimensional dense space. This is similar to the process used to generate word embeddings and
reduce dimensions in recommender systems based on matrix factorization models. I will provide a detailed account of
all the methods in a different post, but here I will shortly explain how projections differ in each paper, what the score
functions do, and what consequences the choices have for relationship inference and computational complexity.

2.2. Introduction to Knowledge Graph Embedding 9

https://www.slideshare.net/apachemxnet/building-content-recommendation-systems-using-mxnet-gluon

dglke Documentation, Release 0.1.0

TransE:

TransE is a representative translational distance model that represents entities and relations as vectors in the same
semantic space of dimension R, where 𝑑 is the dimension of the target space with reduced dimension. A fact in
the source space is represented as a triplet (ℎ, 𝑟, 𝑡) where ℎ is short for head, 𝑟 is for relation, and 𝑡 is for tail.
The relationship is interpreted as a translation vector so that the embedded entities are connected by relation 𝑟 have
a short distance. [3, 4] In terms of vector computation it could mean adding a head to a relation should approx-
imate to the relation’s tail, or ℎ + 𝑟 ≈ 𝑡. For example if ℎ1 = 𝑒𝑚𝑏(”𝑂𝑡𝑡𝑎𝑤𝑎”), ℎ2 = 𝑒𝑚𝑏(”𝐵𝑒𝑟𝑙𝑖𝑛”), 𝑡1 =
𝑒𝑚𝑏(”𝐶𝑎𝑛𝑎𝑑𝑎”), 𝑡2 = (”𝐺𝑒𝑟𝑚𝑎𝑛𝑦”), and finally 𝑟 = ”𝐶𝑎𝑝𝑖𝑙𝑎𝑡𝑂𝑓”, then ℎ1 + 𝑟 and ℎ2 + 𝑟 should approximate
𝑡1 and 𝑡2 respectively. TransE performs linear transformation and the scoring function is negative distance between
ℎ + 𝑟 and 𝑡, or 𝑓 = −‖ℎ + 𝑟 − 𝑡‖ 1

2

Figure 3: TransE

TransR

TransE cannot cover a relationship that is not 1-to-1 as it learns only one aspect of similarity. TransR addresses this
issue with separating relationship space from entity space where ℎ, 𝑡 ∈ R𝑘 and 𝑟 ∈ R𝑑. The semantic spaces do not
need to be of the same dimension. In the multi-relationship modeling we learn a projection matrix 𝑀 ∈ R𝑘×𝑑 for
each relationship that can project an entity to different relationship semantic spaces. Each of these spaces capture a
different aspect of an entity that is related to a distinct relationship. In this case a head node ℎ and a tail node 𝑡 in
relation to relationship 𝑟 is projected into the relationship space using the learned projection matrix 𝑀𝑟 as ℎ𝑟 = ℎ𝑀𝑟

and 𝑡𝑟 = 𝑡𝑀𝑟 respectively. Figure 5 illustrates this projection.

Let us explore this using an example. Mary and Tom are siblings and colleagues. They both are vegetarians. Joe also
works for Amazon and is a colleague of Mary and Tom. TransE might end up learning very similar embeddings for
Mary, Tom, and Joe because they are colleagues but cannot recognize the (not) sibling relationship. Using TransR, we
learn projection matrices: 𝑀𝑠𝑖𝑏, 𝑀𝑐𝑙𝑔 and 𝑀𝑣𝑔𝑡 that perform better at learning relationship like (not)sibling.

The score function in TransR is similar to the one used in TransE and measures euclidean distance between ℎ + 𝑟 and
𝑡, but the distance measure is per relationship space. More formally: 𝑓𝑟 = ‖ℎ𝑟 + 𝑟 − 𝑡𝑟‖22
Figure 4: TransR projecting different aspects of an entity to a relationship space.

Another advantage of TransR over TransE is its ability to extract compositional rules. Ability to extract rules has two
major benefits. It offers richer information and has a smaller memory space as we can infer some rules from others.

Drawbacks

The benefits from more expressive projections in TransR adds to the complexity of the model and a higher rate of data
transfer, which has adversely affected distributed training. TransE requires 𝑂(𝑑) parameters per relation, where 𝑑 is
the dimension of semantic space in TransE and includes both entities and relationships. As TransR projects entities
to a relationship space of dimension 𝑘, it will require 𝑂(𝑘𝑑) parameters per relation. Depending on the size of k, this
could potentially increase the number of parameters drastically. In exploring DGL-KE, we will examine benefits of
DGL-KE in making computation of knowledge embedding significantly more efficient.

ref: TransR[5], 7

TransE and its variants such as TransR are generally called translational distance models as they translate the entities,
relationships and measure distance in the target semantic spaces. A second category of KE models is called semantic
matching that includes models such as RESCAL, DistMult, and ComplEx.These models make use of a similarity-based
scoring function.

The first of semantic matching models we explore is RESCAL.

10 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

RESCAL

RESCAL is a bilinear model that captures latent semantics of a knowledge graph through associate entities with
vectors and represents each relation as a matrix that models pairwise interaction between entities.

Multiple relations of any order can be represented as tensors. In fact 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 tensors are by definition
representations of multi-dimensional vector spaces. RESCAL, therefore, proposes to capture entities and relationships
as multidimensional tensors as illustrated in figure 5.

RESCAL uses semantic web’s RDF formation where relationships are modeled as (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡). Ten-
sor 𝒳 contains such relationships as 𝒳𝑖𝑗𝑘 between 𝑖th and 𝑗th entities through 𝑘th relation. Value of 𝒳𝑖𝑗𝑘 is determined
as:

𝒳𝑖𝑗𝑘 =

{︃
1 if (𝑒𝑖, 𝑟𝑘, 𝑒𝑗) holds
0 if (𝑒𝑖, 𝑟𝑘, 𝑒𝑗) does not hold

Figure 5: RESCAL captures entities and their relations as multi-dimensional tensor

As entity relationship tensors tend to be sparse, the authors of RESCAL, propose a dyadic decomposition to capture
the inherent structure of the relations in the form of a latent vector representation of the entities and an asymmetric
square matrix that captures the relationships. More formally each slice of 𝒳𝑘 is decomposed as a rank−𝑟 factorization:

𝒳𝑘 ≈ 𝐴𝑅𝑘A
⊤, for 𝑘 = 1, . . . ,𝑚

where A is an 𝑛 × 𝑟 matrix of latent-component representation of entities and asymmetrical 𝑟 × 𝑟 square matrix 𝑅𝑘

that models interaction for 𝑘𝑡ℎ predicate component in 𝒳 . To make sense of it all, let’s take a look at an example:

𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = {Mary :0,Tom :1, Joe :2}
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 = {sibling, colleague}

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑏𝑙𝑖𝑛𝑔
𝑘=0 : Mary and Tom are siblings but Joe is not their sibling.

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑙𝑙𝑒𝑎𝑔𝑢𝑒𝑘=1 : Mary,Tom, and Joe are colleagues

relationship matrices will model: 𝒳‖ =

⎡⎣𝑀𝑎𝑟𝑦 𝑇𝑜𝑚 𝐽𝑜𝑒
𝑇𝑜𝑚 𝐽𝑜𝑒 𝑀𝑎𝑟𝑦
𝐽𝑜𝑒 𝑀𝑎𝑟𝑦 𝑇𝑜𝑚

⎤⎦
𝒳0:𝑠𝑖𝑏𝑙𝑖𝑛𝑔 =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦
𝒳1:𝑐𝑜𝑙𝑙𝑒𝑎𝑔𝑢𝑒 =

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦
Note that even in such a small knowledge graph where two of the three entities have even a symmetrical relationship,
matrices 𝒳𝑘 are sparse and asymmetrical. Obviously colleague relationship in this example is not representative of
a real world problem. Even though such relationships can be created, they contain no information as probability of
occurring is high. For instance if we are creating a knowledge graph for for registered members of a website is a
specific country, we do not model relations like “is countryman of” as it contains little information and has very low
entropy.

Next step in RESCAL is decomposing matrices 𝒳𝑘 using a rank_k decomposition as illustrated in figure 6.

Figure 6: Each of the 𝑘 slices of martix 𝒳 is factorized to its k-rank components in form of a 𝑛 × 𝑟 entity-latent
component and an asymmetric 𝑟 × 𝑟 that specifies interactions of entity-latent components per relation.

𝐴 and 𝑅𝑘 are computed through solving an optimization problem that is correlated to minimizing the distance between
𝒳𝑘 and 𝐴𝑅𝑘A

⊤.

2.2. Introduction to Knowledge Graph Embedding 11

dglke Documentation, Release 0.1.0

Now that the structural decomposition of entities and their relationships are modeled, we need to create a score function
that can predict existence of relationship for those entities we lack their mutual connection information.

The score function 𝑓𝑟(ℎ, 𝑡) for ℎ, 𝑡 ∈ R𝑑, where ℎ and 𝑡 are representations of head and tail entities, captures pairwise
interactions between entities in ℎ and 𝑡 through relationship matrix 𝑀𝑟 that is the collection of all individual 𝑅𝑘

matrices and is of dimension 𝑑× 𝑑.

𝑓𝑟(ℎ, 𝑡) = h⊤𝑀𝑟𝑡 =

𝑑−1∑︁
𝑖=0

𝑑−1∑︁
𝑗=0

[𝑀𝑟]𝑖𝑗 .[ℎ]𝑖.[𝑡]𝑗

Figure 7 illustrates computation of the the score for RESCAL method.

Figure 7: RESCAL

Score function 𝑓 requires 𝑂(𝑑2) parameters per relation.

Ref: 6,7

DistMult

If we want to speed up the computation of RESCAL and limit the relationships only to symmetric relations, then
we can take advantage of the proposal put forth by DistMult[8], which simplifies RESCAL by restricting 𝑀𝑟 from a
general asymmetric 𝑟 × 𝑟 matrix to a diagonal square matrix, thus reducing the number of parameters per relation to
𝑂(𝑑). DistMulti introduces vector embedding 𝑟 ∈ ℛ𝑑. is computed as:

𝑓𝑟(ℎ, 𝑡) = h⊤𝑑𝑖𝑎𝑔(𝑟)𝑡 =

𝑑−1∑︁
𝑖=0

[𝑟]𝑖.[ℎ]𝑖.[𝑡]𝑖

Figure 8 illustrates how DistMulti computes the score by capturing the pairwise interaction only along the same
dimensions of components of h and t.

Figure 8: DistMulti

A basic refresher on linear algebra

𝑖𝑓 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛 =

⎡⎢⎢⎢⎣
𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛

...
...

.
𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛

⎤⎥⎥⎥⎦
𝑚×𝑛

and 𝐵 = [𝑏𝑖𝑗]𝑛×𝑘 =

⎡⎢⎢⎢⎣
𝑏11 𝑏12 . . . 𝑏1𝑘
𝑏21 𝑏22 . . . 𝑏2𝑘

...
...

.
𝑏𝑛1 𝑏𝑛2 . . . 𝑏𝑛𝑘

⎤⎥⎥⎥⎦
𝑛×𝑘

𝑡ℎ𝑒𝑛 𝐶 = [𝑐𝑚𝑘]𝑚×𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑚𝑘 =

𝑘∑︁
𝑝=1

𝑎𝑚𝑝𝑏𝑝𝑘 𝑡ℎ𝑢𝑠 :

𝐶𝑚×𝑘 =

⎡⎢⎢⎢⎣
𝑎11𝑏11 + · · · + 𝑎1𝑛𝑏𝑛1 𝑎11𝑏12 + · · · + 𝑎1𝑛𝑏𝑛2 . . . 𝑎11𝑏1𝑘 + · · · + 𝑎1𝑛𝑏𝑛𝑘
𝑎21𝑏11 + · · · + 𝑎2𝑛𝑏𝑛1 𝑎21𝑏12 + · · · + 𝑎2𝑛𝑏𝑛2 . . . 𝑎21𝑏1𝑘 + · · · + 𝑎2𝑛𝑏𝑛𝑘

...
...

.
𝑎𝑚1𝑏11 + · · · + 𝑎𝑚𝑛𝑏𝑛1 𝑎𝑚1𝑏12 + · · · + 𝑎𝑚𝑛𝑏𝑛2 . . . 𝑎𝑚1𝑏1𝑘 + · · · + 𝑎𝑚𝑛𝑏𝑛𝑘

⎤⎥⎥⎥⎦
𝑛×𝑘

We know that a diagonal matrix is a matrix in which all non diagonal elements, (𝑖 ̸= 𝑗), are zero. This reduces
complexity of matrix multiplication as for diagonal matrix multiplication for diagonal matrices 𝐴𝑚×𝑛 and 𝐵𝑛×𝑘,
𝐶 = 𝐴𝐵 = [𝑐𝑚𝑘]𝑚×𝑘 where

𝑐𝑚𝑘 =

{︃
0 for 𝑚 ̸= 𝑘

𝑎𝑚𝑏𝑘 for 𝑚 = 𝑘

12 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

This is basically multiplying to numbers 𝑎𝑖𝑖 and 𝑏𝑖𝑖 to get the value for the corresponding diagonal element on 𝐶.

This complexity reduction is the reason that whenever possible we would like to reduce matrices to diagonal matrices.

ComplEx

In order to model a KG effectively, models need to be able to identify most common relationship patters as laid out
earlier in this blog. relations can be reflexive/irreflexive, symmetric/antisymmetric, and transitive/intransitive. We
have also seen two classes of semantic matching models, RESCAL and DistMulti. RESCAL is expressive but has an
exponential complexity, while DistMulti has linear complexity but is limited to symmetric relations.

An ideal model needs to keep linear complexity while being able to capture antisymmetric relations. Let us go back
to what is good at DistMulti. It is using a rank-decomposition based on a diagonal matrix. We know that dot product
of embedding scale well and handles symmetry, reflexity, and irreflexivity effectively. Matrix factorization (MF)
methods have been very successful in recommender systems. MF works based on factorizing a relation matrix to
dot product of lower dimensional matrices UV⊤ where UV ∈ R𝑛×𝐾 . The underlying assumption here is that the
same entity would be taken to be different depending on whether it appears as a subject or an object in a relationship.
For instance “Quebec” in “Quebec is located in Canada” and “Joe is from Quebec” appears as subject and object
respectively. In many link prediction tasks the same entity can assume both roles as we perform graph embedding
through adjacency matrix computation. Dealing with antisymmetric relationships, consequently, has resulted in an
explosion of parameters and increased complexity and memory requirements.

The goal ComplEx is set to achieve is performing embedding while reducing the number of required parameters, to
scale well, and to capture antisymmetric relations. One essential strategy is to compute a joint representation for the
entities regardless of their role as subject or object and perform dot product on those embeddings.

Such embeddings cannot be achieved in the real vector spaces, so the ComplEx authors propose complex embedding.

But first a quick reminder about complex vectors. #### Complex Vector Space 1 is the unit for real numbers, 𝑖 =
√
−1

is the imaginary unit of complex numbers. Each complex number has two parts, a real and an imaginary part and is
represented as 𝑐 = 𝑎 + 𝑏𝑖 ∈ C. As expected, the complex plane has a horizontal and a vertical axis. Real numbers
are placed on the horizontal axis and the vertical axis represents the imaginary part of a number. This is done in much
the same way as in 𝑥 and 𝑦 are represented on Cartesian plane. An n-dimensional complex vector 𝒱 ∈ C𝑛 is a vector
whose elements 𝑣𝑖 ∈ C are complex numbers.

Example:

𝑉1 =

[︂
2 + 3𝑖
1 + 5𝑖

]︂
and 𝑉2 =

⎡⎣2 + 3𝑖
1 + 5𝑖

3

⎤⎦ are in C2 and C3 respectively.

R ⊂ C and R𝑛 ⊂ C𝑛. Basically a real number is a complex number whose imaginary part has a coefficient of zero.

modulus of a complex number 𝑧 is a complex number as is given by 𝑧 = 𝑎 + 𝑏𝑖, modulus 𝑧 is analogous to size in
vector space and is given by | 𝑧 |=

√
𝑎2 + 𝑏2

Complex Conjugate The conjugate of complex number 𝑧 = 𝑎 + 𝑏𝑖 is denoted by 𝑧 and is given by 𝑧 = 𝑎− 𝑏𝑖.

Example:

𝑉1 =

[︂
2 − 3𝑖
1 − 5𝑖

]︂
and 𝑉2 =

⎡⎣2 − 3𝑖
1 − 5𝑖

3

⎤⎦ are in C2 and C3 respectively.

Conjugate Transpose The conjugate transpose of a complex matrix 𝒜, is denoted as 𝒜* and is given by 𝒜* = 𝒜⊤

where elements of 𝒜 are complex conjugates of 𝒜.

Example:

𝑉 *
1 =

[︀
2 − 3𝑖 1 − 5𝑖

]︀
and 𝑉 *

2 =
[︀
2 − 3𝑖 1 − 5𝑖 3

]︀
are in C2 and C3 respectively.

2.2. Introduction to Knowledge Graph Embedding 13

dglke Documentation, Release 0.1.0

Complex dot product. aka Hermitian inner product if u and c are complex vectors, then their inner product is
defined as ⟨u,v⟩ = u*v.

Example:

𝑢 =

[︂
2 + 3𝑖
1 + 5𝑖

]︂
and 𝑣 =

[︂
1 + 𝑖
2 + 2𝑖

]︂
are in C2 and C3 respectively.

then 𝑢* =
[︀
2 − 3𝑖 1 − 5𝑖

]︀
and

⟨𝑢, 𝑣⟩ = 𝑢*𝑣 =
[︀
2 − 3𝑖 1 − 5𝑖

]︀ [︂ 1 + 𝑖
2 + 2𝑖

]︂
= (2 − 3𝑖)(1 + 𝑖) + (1 − 5𝑖)(2 + 2𝑖) = [4 − 13𝑖]

Definition: A complex matrix 𝐴 us unitary when 𝐴−1 = 𝐴*

Example: 𝐴 = 1
2

[︂
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

]︂
Theorem: An 𝑛× 𝑛 complex matrix 𝐴 is unitary ⇐⇒ its rows or columns form an orthanormal set in 𝒞𝑛

Definition: A square matrix 𝐴 is Hermitian when 𝐴 = 𝐴*

Example:𝐴 =

[︂
𝑎1 𝑏1 + 𝑏2𝑖

𝑏1 + 𝑏2𝑖 𝑑 + 1

]︂
Theorem: Matrix 𝐴 is Hermitian ⇐⇒ : 1. 𝑎𝑖𝑖 ∈ R 2. 𝑎𝑖𝑗 is complex conjugate of 𝑎𝑗𝑖

Theorem: If 𝐴 is a Hermirian matrix, then its eigenvalues are real numbers.

Theorem: Hermitian matrices are unitarity diagonizable.

Definitions: A squared matrix A is unitarily diagonizable when there exists a unitary matrix 𝑃 such that 𝑃−1𝐴𝑃 .

Diagonizability can be extended to a larger class of matrices, called normal matrices.

Definition: A square complex matrix A is called normal when it commutes with its conjugate transpose. 𝐴𝐴* = 𝐴*𝐴.

Theorem: A complex matrix 𝐴 is normal ⇐⇒ 𝐴 is diagonizable.

This theorem plays a crucial role in ComplEx paper.

ref: https://www.cengage.com/resource_uploads/downloads/1133110878_339554.pdf

Eigen decomposition for entity embedding

The matrix decomposition methods have a long history in machine learning. Using embeddings based decomposition
in the form of 𝑋 = 𝐸𝑊𝐸−1 for square symmetric matrices can be represented as eigen decomposition 𝑋 = 𝑄Λ𝑄−1

where 𝑄 is orthogonal (|= 𝑄−1 = 𝑄⊤) and Λ = 𝑑𝑖𝑎𝑔(𝜆) and 𝜆𝑖 is an eigenvector of 𝑋 .

As ComplEx targets to learn antisymmetric relations, and eigen decomposition for asymmetric matrices does not
exist in real space, the authors extend the embedding representation to complex numbers, where they can factorize
complex matrices and benefit from efficient scaling and distribution of matrix multiplication while being able to capture
antisymmetric relations. This asymmetry is resulted from the fact that dot product of complex matrices involves
conjugate transpose.

We are not done yet. Do you remember in RESCAL the number of parameters was 𝑂(𝑑2) and DistMulti reduce that
to a linear relation of 𝑂(𝑑) by limiting matrix 𝑀𝑟 to be diagonal?. Here even with complex eigenvectors 𝐸 ∈ 𝒞𝑛×𝑛,
inversion of 𝐸 in 𝑋 = 𝐸𝑊𝐸* explodes the number of parameters. As a result we need to find a solutions in which
W is a diagonal matrix, and 𝐸 = 𝐸*, and 𝑋 is asymmetric, so that we 1) computation is minimized, 2) there is no
need to compute inverse of 𝐸, and 3) antisymmetric relations can be captures. We have already seen the solution
in the complex vector space section. The paper does construct the decomposition in a normal space, a vector space
composed of complex normal vectors.

14 Chapter 2. Get started with DGL-KE!

https://www.cengage.com/resource_uploads/downloads/1133110878_339554.pdf

dglke Documentation, Release 0.1.0

The Score Function

A relation between two entities can be modeled as a sign function, meaning that if there is a relation between a subject
and an object, then the score is 1, otherwise it is -1. More formally, 𝑌𝑠𝑜 ∈ {−1, 1}. The probability of a relation
between two edntities to exist is then given by sigmoid function: 𝑃 (𝑌𝑠𝑜 = 1) = 𝜎(𝑋𝑠𝑜).

This probability score requires 𝑋 to be real, while 𝐸𝑊𝐸* includes both real and imaginary components. We can
simply project the decomposition to the real space so that 𝑋 = 𝑅𝑒(𝐸𝑊𝐸*). the score function of ComlEx, therefore
is given by:

𝑓𝑟(ℎ, 𝑡) = 𝑅𝑒(ℎ⊤𝑑𝑖𝑎𝑔(𝑟)𝑡) = 𝑅𝑒(

𝑑−1∑︁
𝑖=0

[𝑟]𝑖.[ℎ]𝑖.[𝑡]𝑖)

and since there are no nested loops, the number of parameters is linear and is given by 𝑂(𝑑).

RotateE

Let us reexamine translational distance models with the ones in latest publications on relational embedding models
(RotateE). Inspired by TransE, RotateE veers into complex vector space and is motivated by Euler’s identity, defines
relations as rotation from head to tail.

Euler’s Formula

𝑒𝑥 can be computed using the infinite series below:

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!
+ . . .

replacing 𝑥 with 𝑖𝑥 entails:

𝑒(𝑖𝑥) = 1 +
𝑖𝑥

1!
− 𝑥2

2!
− 𝑖𝑥3

3!
+

𝑥2

4!
+

𝑖𝑥5

5!
− 𝑥6

6!
− 𝑖𝑥7

3!
+

𝑥8

8!
+ . . .

Computing 𝑖 to a sequence of powers and replacing the values in :math:‘e^{ix} ‘ the the results in:

𝑖2 = −1, 𝑖3 = 𝑖2𝑖 = −𝑖, 𝑖4 = 𝑖𝑖3 = −12 = 1, 𝑖5 = 𝑖4𝑖 = 𝑖, 𝑖6 = 𝑖5𝑖 = 𝑖2 = −1, . . .

𝑒(𝑖𝑥) = 1 +
𝑖𝑥

1!
+

𝑖2𝑥2

2!
+

𝑖3𝑥3

3!
+

𝑖4𝑥4

4!
+

𝑖5𝑥5

5!
+

𝑖6𝑥6

6!
+ . . .

rearranging the series and factoring 𝑖 in terms that include it:

1 − 𝑥2

2!
+

𝑥4

4!
− 𝑥6

6!
+

𝑥8

8!
+ 𝑖

(︂
𝑥

1!
− 𝑥3

3!
+

𝑥5

5!
− 𝑥7

7!

)︂
(1)

𝑠𝑖𝑛 and 𝑐𝑜𝑠𝑖𝑛 representation as series are given by:

𝑠𝑖𝑛(𝑥) =
𝑥

1!
− 𝑥3

3!
+

𝑥5

5!
− 𝑥7

7!
+ . . .

𝑐𝑜𝑠(𝑥) = 1 − 𝑥2

2!
+

𝑥4

4!
− 𝑥6

6!
+

𝑥8

8!
+ . . .

Finally replacing terms in equation (1) with 𝑠𝑖𝑛 and 𝑐𝑜𝑠𝑖𝑛, we have:

𝑒𝑖𝜃 = 𝑐𝑜𝑠(𝜃) + 𝑖𝑠𝑖𝑛(𝜃) (2)

Equation 2 is called Euler’s formula and has interesting consequences in a way that we can represent complex numbers
as rotation on the unit circle.

2.2. Introduction to Knowledge Graph Embedding 15

dglke Documentation, Release 0.1.0

Modeling Relations as Rotation

Given a triplet (ℎ, 𝑟, 𝑡), 𝑡 = ℎ ∘ 𝑟, where ℎ, 𝑟, and 𝑡 ∈ C𝑘 are the embeddings. modulus | 𝑟𝑖 |= 1(as we are in the unit
circle thanks to Euler’s formula), and ∘ is the element-wise product. We, therefore, for each dimension expect to have:

𝑡𝑖 = ℎ𝑖𝑟𝑖, where ℎ𝑖, 𝑟𝑖, 𝑡𝑖 ∈ C, 𝑎𝑛𝑑 | 𝑟𝑖 |= 1.

Restricting | 𝑟𝑖 |= 1 𝑟𝑖 will be of form 𝑒𝑖𝜃𝑟,𝑖 . Intuitively 𝑟𝑖 corresponds to a counterclockwise rotation by 𝜃𝑟,𝑖 based
on Eurler’s formula.

Under these conditions,: - 𝑟 is symmetric ⇐⇒ ∀𝑖 ∈ (0, 𝑘] : 𝑟𝑖 = 𝑒
0
𝑖𝜋 = ±1. - 𝑟1 and 𝑟2 are inverse ⇐⇒ 𝑟2 = 𝑟1

(embeddings of relations are complex conjugates) - 𝑟3 = 𝑒𝑖𝜃3 is a combination of 𝑟1 = 𝑒𝑖𝜃1 and 𝑟2 = 𝑒𝑖𝜃2 ⇐⇒ 𝑟3 =
𝑟1 ∘ 𝑟2.(𝑖.𝑒)𝜃3 = 𝜃1 + 𝜃2 or a rotation is a combination of two smaller rotations sum of whose angles is the angle of
the third relation.

Figure 9: RotateE vs. TransE

Score Function

score function of RotateE measures the angular distance between head and tail elements and is defined as:

𝑑𝑟(ℎ, 𝑡) = ‖ℎ ∘ 𝑟 − 𝑡‖

2.2.7 Training KE

2.2.8 Negative Sampling

Generally to train a KE, all the models we have investigated apply a variation of negative sampling by corrupting
triplets (ℎ, 𝑟, 𝑡). They corrupt either ℎ, or 𝑡 by by sampling from set of head or tail entities for heads and tails
respectively. The corrupted triples can be of wither forms (ℎ′, 𝑟, 𝑟) or (ℎ, 𝑟, 𝑡′), where ℎ′ and 𝑡′ are the negative
samples.

2.2.9 Loss functions

Most commonly logistic loss and pairwise ranking loss are employed. The logistic loss returns -1 for negative samples
and +1 for the positive samples. So if D+ and D− are negative and positive data, 𝑦 = ±1 is the label for positive and
negative triplets and 𝑓 (figure 2) is the ranking function, then the logistic loss is computed as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁

(ℎ,𝑟,𝑡)∈D+∪D−

𝑙𝑜𝑔(1 + 𝑒−𝑦×𝑓(ℎ,𝑟,𝑡))

The second commonly use loss function is margin based pairwise ranking loss, which minimizes the rank for positive
triplets((ℎ, 𝑟, 𝑡) does hold). The lower the rank, the higher the probability. Ranking loss is give by:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁

(ℎ,𝑟,𝑡)∈D+

∑︁
(ℎ,𝑟,𝑡)∈D−

𝑚𝑎𝑥(0, 𝛾 − 𝑓(ℎ, 𝑟, 𝑡) + 𝑓(ℎ′, 𝑟′, 𝑡′)).

16 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

Method Ent. Embed-
ding

Rel. Emebed-
ding

Score Function Com-
plexity

symm Anti Inv Comp

TransE ℎ, 𝑡 ∈ R𝑑 𝑟 ∈ R𝑑 −‖ℎ + 𝑟 − 𝑡‖ 𝑂(𝑑) − X X −
TransR ℎ, 𝑡 ∈ R𝑑 𝑟 ∈ R𝑘,𝑀𝑟 ∈

R𝑘×𝑑
−‖𝑀𝑟ℎ + 𝑟 −
𝑀𝑟𝑡‖22

𝑂(𝑑2) − X X X

RESCAL ℎ, 𝑡 ∈ R𝑑 𝑀𝑟 ∈ R𝑑×𝑑 ℎ⊤𝑀𝑟𝑡 𝑂(𝑑2) X − X X
Dist-
Multi

ℎ, 𝑡 ∈ R𝑑 𝑟 ∈ R𝑑 ℎ⊤𝑑𝑖𝑎𝑔(𝑟)𝑡 𝑂(𝑑) X − − −

Com-
plEx

ℎ, 𝑡 ∈ C𝑑 𝑟 ∈ C𝑑 ℎ⊤𝑅𝑒(𝑑𝑖𝑎𝑔(𝑟)𝑡) 𝑂(𝑑) X X X −

RotateE ℎ, 𝑡 ∈ C𝑑 𝑟 ∈ C𝑑 ‖ℎ ∘ 𝑟 − 𝑡‖ 𝑂(𝑑) X X X X

2.2.10 References

1. http://semantic-web-journal.net/system/files/swj1167.pdf

2. Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph embedding by relational
rotation in complex space. CoRR, abs/1902.10197, 2019.

3. Knowledge Graph Embedding: A Survey of Approaches and Applications Quan Wang, Zhendong Mao, Bin
Wang, and Li Guo. DOI 10.1109/TKDE.2017.2754499, IEEE Transactions on Knowledge and Data Engineer-
ing

4. transE: Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, JasonWeston, and Oksana Yakhnenko. Trans-
lating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems
26. 2013. 5.TransR: Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

5. RESCAL: Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, 2011.

6. Survey paper: Q. Wang, Z. Mao, B. Wang and L. Guo, “Knowledge Graph Embedding: A Survey of Approaches
and Applications,” in IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724-2743,
1 Dec. 2017.

7. DistMult: Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In Proceedings of the International Conference on
Learning Representations (ICLR) 2015, May 2015.

8. ComplEx: Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. CoRR, abs/1606.06357, 2016.

9. Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph embedding by relational
rotation in complex space. CoRR, abs/1902.10197, 2019.

2.3 DGL-KE Command Lines

DGL-KE provides a set of command line tools to train knowledge graph embeddings and make prediction with the
embeddings easily.

2.3. DGL-KE Command Lines 17

http://semantic-web-journal.net/system/files/swj1167.pdf

dglke Documentation, Release 0.1.0

2.3.1 Format of Input Data

DGL-KE toolkits provide commands for training, evaluation and inference. Different commands require different
kinds of input data, including:

• Knowledge Graph The knowledge graph used in train, evaluation and inference.

• Trained Embeddings The embedding generated by dglke_train or dglke_dist_train.

• Other Data Extra input data that used by inference tools.

A knowledge graph is usually stored in the form of triplets (head, relation, tail). Heads and tails are entities in the
knowledge graph. All of them can be identified with unique IDs. In general, there exists two types of IDs for entities
and relations in DGL-KE:

• Raw ID The entities and relations can be identified by names, usually in the format of strings.

• KGE ID They are used during knowledge graph training, evaluation and inference. Both entities and relations
are identified with integers and should start from 0 and be contiguous.

If the input file of a knowledge graph uses Raw IDs for entities and relations and does not provide a mapping between
Raw IDs and KGE Ids, DGL-KE will generate an ID mapping automatically.

The following table gives the overview of the input data for different toolkits. (Y for necessary and N for no-usage)

DGL-KE Toolkit Knowledge Graph Trained Embeddings Other Data
Triplets ID Mapping Embeddings

dglke_train Y Y N N
dglke_eval Y N Y N
dglke_partition Y Y N N
dglke_dist_train Use data generated by dglke_partition
dglke_predict N Y Y Y
dglke_emb_sim N Y Y Y

Format of Knowledge Graph Used by DGL-KE

DGL-KE support three kinds of Knowledge Graph Input:

• Built-in Knowledge Graph Built-in knowledge graphs are preprocessed datasets provided by DGL-KE pack-
age. There are five built-in datasets: FB15k, FB15k-237, wn18, wn18rr, Freebase.

• Raw User Defined Knowledge Graph Raw user defined knowledge graph dataset uses the Raw IDs. Necessary
ID convertion is needed before training a KGE model on the dataset. dglke_train, dglke_eval and
dglke_partition provides the basic ability to do the ID convertion automatically.

• KGE User Defined Knowledge Graph KGE user defined knowledge graph dataset already uses KGE IDs. The
entities and relations in triplets are integers.

Format of Built-in Knowledge Graph

DGL-KE provides five built-in knowledge graphs:

18 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

Dataset #nodes #edges #relations
FB15k 14,951 592,213 1,345
FB15k-237 14,541 310,116 237
wn18 40,943 151,442 18
wn18rr 40,943 93,003 11
Freebase 86,054,151 338,586,276 14,824

Each of these built-in datasets contains five files:

• train.txt: training set, each line contains a triplet [h, r, t]

• valid.txt: validation set, each line contains a triplet [h, r, t]

• test.txt: test set, each line contains a triplet [h, r, t]

• entities.dict: ID mapping of entities

• relations.dict: ID mapping of relations

Format of Raw User Defined Knowledge Graph

Raw user defined knowledge graph dataset uses the Raw IDs. The knowledge graph can be stored in a single file (only
providing the trainset) or in three files (trainset, validset and testset). Each file stores the triplets of the knowledge
graph. The order of head, relation and tail can be arbitry, e.g. [h, r, t]. A delimiter should be used to seperate them.
The recommended delimiter includes \t, |, , and ;. The ID mapping is automatically generated by DGL-KE toolkits
for raw user defined knowledge graphs.

Following gives an example of Raw User Defined Knowledge Graph files:

train.txt:

"Beijing","is_capital_of","China"
"Pairs","is_capital_of","France"
"London","is_capital_of","UK"
"UK","located_at","Europe"
"China","located_at","Asia"
"Tokyo","is_capital_of","Japan"

valid.txt:

"France","located_at","Europe"

test.txt:

"Japan","located_at","Asia"

Format of User Defined Knowledge Graph

User Defined Knowledge Graph uses the KGE IDs, which means both the entities and relations have already been
remapped. The entity IDs and relation IDs are both start from 0 and be contiguous. The knowledge graph can be
stored in a single file (only providing the trainset) or in three files (trainset, validset and testset) along with two ID
mapping files (one for entity ID mapping and another for relation ID mapping). The knowledge graph is stored as
triplets in files. The order of head, relation and tail can be arbitry, e.g. [h, r, t]. A delimiter should be used to seperate
them. The recommended delimiter includes \t, |, , and ;. The ID mapping information is stored as pairs in mapping

2.3. DGL-KE Command Lines 19

dglke Documentation, Release 0.1.0

files with pair[0] as the integer ID and pair[1] as the original raw ID. The dglke_train and dglke_dist_train
will do some integrity check of the IDs according to the mapping files.

Following gives an example of User Defined Knowledge Graph files:

train.txt:

0,0,1
2,0,3
4,0,5
5,1,6
1,1,7
8,0,9

valid.txt:

3,1,6

test.txt:

9,1,7

Following gives an example of entity ID mapping file:

entities.dict:

0,"Beijing"
1,"China"
2,"Pairs"
3,"France"
4,"London"
5,"UK"
6,"Europe"
7,"Asia"
8,"Tokyo"
9,"Japan"

Following gives an example of relation ID mapping file:

relations.dict:

0,"is_capital_of"
1,"located_at"

Format of Trained Embeddings

The trained embeddings are generated by dglke_train or dglke_dist_train CMD. The trained embeddings
are stored in npy format. Usually there are two files:

• Entity embeddings Entity embeddings are stored in a file named in format of
dataset_name>_<model>_entity.npy and can be loaded through numpy.load().

• Relation embeddings Relation embeddings are stored in a file named in format of
dataset_name>_<model>_relation.npy and can be loaded through numpy.load()

Format of Input Data Used by DGL-KE Inference Tools

Both dglke_predict and dglke_emb_sim require user provied list of inferencing object.

20 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

Format of Raw Input Data

Raw Input Data uses the Raw IDs. Thus the input file contains objects in raw IDs and necessary ID mapping file(s)
are required. Each line of the input file contains only one object and it can contains multiple lines. The ID mapping
file store mapping information in pairs with pair[0] as the integer ID and pair[1] as the original raw ID.

Following gives an example of raw input files for dglke_predict:

head.list:

"Beijing"
"London"

rel.list:

"is_capital_of"

tail.list:

"China"
"France"
"UK"

entities.dict:

0,"Beijing"
1,"China"
2,"Pairs"
3,"France"
4,"London"
5,"UK"
6,"Europe"

relations.dict:

0,"is_capital_of"
1,"located_at"

Format of KGE Input Data

KGE Input Data uses the KGE IDs. Thus the input file contains objects in KGE IDs, i.e., intergers. Each line of the
input file contains only one object and it can contains multiple lines.

Following gives an example of raw input files for dglke_predict:

head.list:

0
4

rel.list:

0

tail.list:

2.3. DGL-KE Command Lines 21

dglke Documentation, Release 0.1.0

1
3
5

2.3.2 Format of Output

Different DGL-KE command line toolkits has different output data. Basically they have following dependency:

• dglke_dist_train depends on the output of dglke_partition

• dglke_eval depends on the output (Trained Embeddings) of the training CMD dglke_train or
dglke_dist_train

• dglke_predict and dglke_emb_sim depends on the the output (Trained Embeddings) of the training
CMD dglke_train or dglke_dist_train as well as the ID mapping file.

Output format of dglke_partition

dglke_partition parititions a graph into parts. It generates N partition directories according to the input argu-
ment -k N. For example, when we set -k to 4, it will generate 4 directories: partition_0, partition_1,
partition_2, and partition_3.

The detailed format of each partition_n is used by dglke_dist_train only and is out of the current scope.
Please refer to distributed train section for more details.

Output format of dglke_train and dglke_dist_train

The output of dglke_train and dglke_dist_train are almost the same. Here we explain the output of
dglke_train in this paragraph.

Basically there are four outputs:

• Traned Embeddings: The saved model. For most of models like TransE, RESCAL, DistMult,
ComplEx, and RotatE, there will be two files: <dataset_name>_<model>_entity.npy for entity
embedding and <dataset_name>_<model>_relation.npy for relation embedding. There are all
saved numpy tensor objects. For TransR, there is one additional output for saving the projection
matrix.

• config.json: The config file records all the details of the training configurations as well as the loca-
tions of ID mapping files generated by dgl_train. The fields of the config file are shown below:

22 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

Field Name Explanation
neg_sample_size int value of param –neg_sample_size
max_train_step int value of param –max_step
double_ent bool value of param –double_ent
rmap_file relation ID mapping file name
lr float value of param –lr
neg_adversarial_sampling bool value of param –neg_adversarial_sampling
gamma float value of param – gamma
adversarial_temperature float value of param – adversarial_temperature
batch_size int value of param – batch_size
regularization_coef float value of param –regularization_coef
model model name
dataset dataset name
emb_size embedding dimention size
regularization_norm int value of param –regularization_norm
double_rel bool value of param –double_rel
emap_file entity ID mapping file name

• Training Log: The output log printed to stdout. If --test is set. The final test result is also output
(MR, MRR, Hit@1, Hit@3, Hit@10).

• ID mapping Files (Optional): The the input data is in format of Raw User Defined Knowledge
Graph, that is all triplets use the Raw ID space. The training script will do the ID convertion and
generate two ID mapping files:

– entities.tsv, for entity ID mapping in format of KGE_entity_ID\tRaw_entity_Name,
for example:

0\tBeijing

1\tChina”

– relations.tsv, for relation ID mapping in format of KGE_relation_ID\tRaw_relation_name,
for example:

0\tis_capital_of

1\tlocated_at

Output format of dglke_eval

There will be only one output of dglke_eval, the testing result including MR, MRR, Hit@1, Hit@3, Hit@10.

Output format of dglke_predict

The output of dglke_predict is a list of top ranked candidate (h, r, t) triplets as well as their prediction scores.
The output is by default written into result.tsv and in the format of ‘src\trel\tdst\tscore’.

The example output is as:

src rel dst score
6 0 15 -2.39380
8 0 14 -2.65297
2 0 14 -2.67331
9 0 18 -2.86985
8 0 20 -2.89651

2.3. DGL-KE Command Lines 23

dglke Documentation, Release 0.1.0

If the input data of dglke_predict is in Raw IDs, dglke_predict will also convert the output result in Raw
IDs.

The example output is as:: head rel tail score 08847694 _derivationally_related_form 09440400 -7.41088 08847694
_hyponym 09440400 -8.99562 02537319 _derivationally_related_form 01490112 -9.08666 02537319 _hy-
ponym 01490112 -9.44877 00083809 _derivationally_related_form 05940414 -9.88155

Output format of dglke_emb_sim

The output of dglke_emb_sim is a list of top ranked candidate (left, right) pairs as well as their embedding similarity
scores. The output is by default written into result.tsv and in the format of ‘left\tright\tscore’.

The example output is as:

left right score
6 15 0.55512
1 12 0.33153
7 20 0.27706
7 19 0.25631
7 13 0.21372

If the input data of dglke_emb_sim is in Raw IDs, dglke_emb_sim will also convert the output result in Raw
IDs.

The example output is as:

left right score
_hyponym _hyponym 0.99999
_derivationally_related_form _derivationally_related_form 0.99999
_hyponym _also_see 0.58408
_hyponym _member_of_domain_topic 0.44027
_hyponym _member_of_domain_region 0.30975

2.3.3 Training in a single machine

dglke_train trains KG embeddings on CPUs or GPUs in a single machine and saves the trained node embeddings
and relation embeddings on disks.

Arguments

The command line provides the following arguments:

• --model_name {TransE, TransE_l1, TransE_l2, TransR, RESCAL, DistMult,
ComplEx, RotatE} The models provided by DGL-KE.

• --data_path DATA_PATH The path of the directory where DGL-KE loads knowledge graph data.

• --dataset DATA_SET The name of the knowledge graph stored under data_path. If it is one of the builtin
knowledge grpahs such as FB15k, FB15k-237, wn18, wn18rr, and Freebase, DGL-KE will automati-
cally download the knowledge graph and keep it under data_path.

• --format FORMAT The format of the dataset. For builtin knowledge graphs, the format is determined au-
tomatically. For users own knowledge graphs, it needs to be raw_udd_{htr} or udd_{htr}. raw_udd_
indicates that the user’s data use raw ID for entities and relations and udd_ indicates that the user’s data uses
KGE ID. {htr} indicates the location of the head entity, tail entity and relation in a triplet. For example, htr

24 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

means the head entity is the first element in the triplet, the tail entity is the second element and the relation is
the last element.

• --data_files [DATA_FILES ...] A list of data file names. This is required for training KGE on their
own datasets. If the format is raw_udd_{htr}, users need to provide train_file [valid_file] [test_file]. If the
format is udd_{htr}, users need to provide entity_file relation_file train_file [valid_file] [test_file]. In both
cases, valid_file and test_file are optional.

• --delimiter DELIMITER Delimiter used in data files. Note all files should use the same delimiter.

• --save_path SAVE_PATH The path of the directory where models and logs are saved.

• --no_save_emb Disable saving the embeddings under save_path.

• --max_step MAX_STEP The maximal number of steps to train the model in a single process. A step trains
the model with a batch of data. In the case of multiprocessing training, the total number of training steps is
MAX_STEP * NUM_PROC.

• --batch_size BATCH_SIZE The batch size for training.

• --batch_size_eval BATCH_SIZE_EVAL The batch size used for validation and test.

• --neg_sample_size NEG_SAMPLE_SIZE The number of negative samples we use for each positive sam-
ple in the training.

• --neg_deg_sample Construct negative samples proportional to vertex degree in the training. When this
option is turned on, the number of negative samples per positive edge will be doubled. Half of the negative
samples are generated uniformly whilethe other half are generated proportional to vertex degree.

• --neg_deg_sample_eval Construct negative samples proportional to vertex degree in the evaluation.

• --neg_sample_size_eval NEG_SAMPLE_SIZE_EVAL The number of negative samples we use to
evaluate a positive sample.

• --eval_percent EVAL_PERCENT Randomly sample some percentage of edges for evaluation.

• --no_eval_filter Disable filter positive edges from randomly constructed negative edges for evaluation.

• -log LOG_INTERVAL Print runtime of different components every LOG_INTERVAL steps.

• --eval_interval EVAL_INTERVAL Print evaluation results on the validation dataset every
EVAL_INTERVAL steps if validation is turned on.

• --test Evaluate the model on the test set after the model is trained.

• --num_proc NUM_PROC The number of processes to train the model in parallel. In multi-GPU training, the
number of processes by default is the number of GPUs. If it is specified explicitly, the number of processes
needs to be divisible by the number of GPUs.

• --num_thread NUM_THREAD The number of CPU threads to train the model in each process. This argu-
ment is used for multi-processing training.

• --force_sync_interval FORCE_SYNC_INTERVAL We force a synchronization between processes
every FORCE_SYNC_INTERVAL steps for multiprocessing training. This potentially stablizes the training
process to get a better performance. For multiprocessing training, it is set to 1000 by default.

• --hidden_dim HIDDEN_DIM The embedding size of relations and entities.

• --lr LR The learning rate. DGL-KE uses Adagrad to optimize the model parameters.

• -g GAMMA or --gamma GAMMA The margin value in the score function. It is used by TransX and RotatE.

• -de or --double_ent Double entitiy dim for complex number It is used by RotatE.

• -dr or --double_rel Double relation dim for complex number.

2.3. DGL-KE Command Lines 25

dglke Documentation, Release 0.1.0

• -adv or --neg_adversarial_sampling Indicate whether to use negative adversarial sampling.It will
weight negative samples with higher scores more.

• -a ADVERSARIAL_TEMPERATURE or --adversarial_temperature
ADVERSARIAL_TEMPERATURE The temperature used for negative adversarial sampling.

• -rc REGULARIZATION_COEF or --regularization_coef REGULARIZATION_COEF The coeffi-
cient for regularization.

• -rn REGULARIZATION_NORM or --regularization_norm REGULARIZATION_NORM norm used
in regularization.

• --gpu [GPU ...] A list of gpu ids, e.g. 0 1 2 4

• --mix_cpu_gpu Training a knowledge graph embedding model with both CPUs and GPUs.The embeddings
are stored in CPU memory and the training is performed in GPUs.This is usually used for training large knowl-
edge graph embeddings.

• --valid Evaluate the model on the validation set in the training.

• --rel_part Enable relation partitioning for multi-GPU training.

• --async_update Allow asynchronous update on node embedding for multi-GPU training. This overlaps
CPU and GPU computation to speed up.

Training on Multi-Core

Multi-core processors are very common and widely used in modern computer architecture. DGL-KE is optimized
on multi-core processors. In DGL-KE, we uses multi-processes instead of multi-threads for parallel training. In this
design, the enity embeddings and relation embeddings will be stored in a global shared-memory and all the trainer
processes can read and write it. All the processes will train the global model in a Hogwild style.

26 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

The following command trains the transE model on FB15k dataset on a multi-core machine. Note that, the total
number of steps to train the model in this case is 24000:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --neg_sample_
→˓size 200 --hidden_dim 400 \
--gamma 19.9 --lr 0.25 --max_step 3000 --log_interval 100 --batch_size_eval 16 --test
→˓-adv \
--regularization_coef 1.00E-09 --num_thread 1 --num_proc 8

After training, you will see the following messages:

-------------- Test result --------------
Test average MRR : 0.6520483281422476
Test average MR : 43.725415178344704
Test average HITS@1 : 0.5257063533713666
Test average HITS@3 : 0.7524081190431853
Test average HITS@10 : 0.8479202993008413

Training on single GPU

Training knowledge graph embeddings requires a large number of tensor computation, which can be accelerated by
GPU. DGL-KE can run on a single GPU, as well as a multi-GPU machine. Also, it can run in a mix-gpu-cpu setting,
where the embedding data cannot fit in GPU memory.

The following command trains the transE model on FB15k on a single GPU:

2.3. DGL-KE Command Lines 27

dglke Documentation, Release 0.1.0

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval
→˓100 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 --max_step 24000

Most of the options here we have already seen in the previous section. The only difference is that we add --gpu 0
to indicate that we will use 1 GPU to train our model. Compared to the cpu training, every 100 steps only takes 0.72
seconds on the Nvidia v100 GPU, which is much faster than 8.9 second in CPU training:

[proc 0]sample: 0.165, forward: 0.282, backward: 0.217, update: 0.087
[proc 0][Train](1900/24000) average pos_loss: 0.32798981070518496
[proc 0][Train](1900/24000) average neg_loss: 0.45353577584028243
[proc 0][Train](1900/24000) average loss: 0.3907627931237221
[proc 0][Train](1900/24000) average regularization: 0.0012039361777715384
[proc 0][Train] 100 steps take 0.726 seconds
[proc 0]sample: 0.137, forward: 0.282, backward: 0.218, update: 0.087
[proc 0][Train](2000/24000) average pos_loss: 0.31407852172851564
[proc 0][Train](2000/24000) average neg_loss: 0.44177248477935793
[proc 0][Train](2000/24000) average loss: 0.3779255014657974
[proc 0][Train](2000/24000) average regularization: 0.0012163800827693194
[proc 0][Train] 100 steps take 0.760 seconds
[proc 0]sample: 0.171, forward: 0.282, backward: 0.218, update: 0.087
[proc 0][Train](2100/24000) average pos_loss: 0.309254549741745
[proc 0][Train](2100/24000) average neg_loss: 0.43288875490427015
[proc 0][Train](2100/24000) average loss: 0.37107165187597274
[proc 0][Train](2100/24000) average regularization: 0.0012251652684062719
[proc 0][Train] 100 steps take 0.726 seconds
[proc 0]sample: 0.136, forward: 0.283, backward: 0.219, update: 0.087
[proc 0][Train](2200/24000) average pos_loss: 0.3109792047739029
[proc 0][Train](2200/24000) average neg_loss: 0.4351910164952278
[proc 0][Train](2200/24000) average loss: 0.3730851110816002
[proc 0][Train](2200/24000) average regularization: 0.0012286945607047528
[proc 0][Train] 100 steps take 0.732 seconds

Mix CPU-GPU training

By default, DGL-KE keeps all node and relation embeddings in GPU memory for single-GPU training. It cannot train
embeddings of large knowledge graphs because the capacity of GPU memory typically is much smaller than the CPU
memory. So if your KG embedding is too large to fit in the GPU memory, you can use the mix_cpu_gpu training:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval
→˓100 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 --max_step 24000 --mix_cpu_gpu

The mix_cpu_gpu training keeps node and relation embeddings in CPU memory and performs batch computation in
GPU. In this way, you can train very large KG embeddings as long as your cpu memory can handle it even though the
training speed of mix_cpu_gpu training is slower than pure GPU training:

[proc 0][Train](8200/24000) average pos_loss: 0.2720812517404556
[proc 0][Train](8200/24000) average neg_loss: 0.4004567116498947
[proc 0][Train](8200/24000) average loss: 0.3362689846754074
[proc 0][Train](8200/24000) average regularization: 0.0014934110222384334
[proc 0][Train] 100 steps take 0.958 seconds
[proc 0]sample: 0.133, forward: 0.339, backward: 0.185, update: 0.301

(continues on next page)

28 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

(continued from previous page)

[proc 0][Train](8300/24000) average pos_loss: 0.27434037417173385
[proc 0][Train](8300/24000) average neg_loss: 0.40289842933416364
[proc 0][Train](8300/24000) average loss: 0.33861940175294875
[proc 0][Train](8300/24000) average regularization: 0.001497904829448089
[proc 0][Train] 100 steps take 0.970 seconds
[proc 0]sample: 0.145, forward: 0.339, backward: 0.185, update: 0.300
[proc 0][Train](8400/24000) average pos_loss: 0.27482498317956927
[proc 0][Train](8400/24000) average neg_loss: 0.40262984931468965
[proc 0][Train](8400/24000) average loss: 0.3387274172902107
[proc 0][Train](8400/24000) average regularization: 0.0015005254035349936
[proc 0][Train] 100 steps take 0.958 seconds
[proc 0]sample: 0.132, forward: 0.338, backward: 0.185, update: 0.301

As we can see, the mix_cpu_gpu training takes 0.95 seconds on every 100 steps. It is slower than pure GPU training
(0.73) but still much faster than CPU (8.9).

Users can speed up the mix_cpu_gpu training by using --async_update option. When using this option, the GPU
device will not wait for the CPU to finish its job when it performs update operation:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval
→˓100 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 --max_step 24000 --mix_cpu_gpu --
→˓async_update

We can see that the training time goes down from 0.95 to 0.84 seconds on every 100 steps:

[proc 0][Train](22500/24000) average pos_loss: 0.2683987358212471
[proc 0][Train](22500/24000) average neg_loss: 0.3919999450445175
[proc 0][Train](22500/24000) average loss: 0.33019934087991715
[proc 0][Train](22500/24000) average regularization: 0.0017611468932591378
[proc 0][Train] 100 steps take 0.842 seconds
[proc 0]sample: 0.161, forward: 0.381, backward: 0.200, update: 0.099
[proc 0][Train](22600/24000) average pos_loss: 0.2682730385661125
[proc 0][Train](22600/24000) average neg_loss: 0.39290413081645964
[proc 0][Train](22600/24000) average loss: 0.3305885857343674
[proc 0][Train](22600/24000) average regularization: 0.0017612565110903234
[proc 0][Train] 100 steps take 0.838 seconds
[proc 0]sample: 0.159, forward: 0.379, backward: 0.200, update: 0.098
[proc 0][Train](22700/24000) average pos_loss: 0.2688949206471443
[proc 0][Train](22700/24000) average neg_loss: 0.3927029174566269
[proc 0][Train](22700/24000) average loss: 0.33079892098903657
[proc 0][Train](22700/24000) average regularization: 0.0017607113404665142
[proc 0][Train] 100 steps take 0.859 seconds

Training on Multi-GPU

DGL-KE also supports multi-GPU training to accelerate training. The following figure depicts 4 GPUs on a single
machine and connected to the CPU through a PCIe switch. Multi-GPU training automatically keeps node and relation
embeddings on CPUs and dispatch batches to different GPUs.

The following command shows how to training our transE model using 4 Nvidia v100 GPUs jointly:

2.3. DGL-KE Command Lines 29

dglke Documentation, Release 0.1.0

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval
→˓1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 1 2 3 --max_step 6000 --async_
→˓update

Compared to single-GPU training, we change --gpu 0 to --gpu 0 1 2 3, and also we change --max_step
from 24000 to 6000:

[proc 0][Train](5800/6000) average pos_loss: 0.2675808426737785
[proc 0][Train](5800/6000) average neg_loss: 0.3915132364630699
[proc 0][Train](5800/6000) average loss: 0.3295470401644707
[proc 0][Train](5800/6000) average regularization: 0.0017635633377358318
[proc 0][Train] 100 steps take 1.123 seconds
[proc 0]sample: 0.237, forward: 0.472, backward: 0.215, update: 0.198
[proc 3][Train](5800/6000) average pos_loss: 0.26807423621416093
[proc 3][Train](5800/6000) average neg_loss: 0.3898271417617798
[proc 3][Train](5800/6000) average loss: 0.32895069003105165
[proc 3][Train](5800/6000) average regularization: 0.0017631534475367515
[proc 3][Train] 100 steps take 1.157 seconds
[proc 3]sample: 0.248, forward: 0.489, backward: 0.217, update: 0.202
[proc 1][Train](5900/6000) average pos_loss: 0.267591707110405
[proc 1][Train](5900/6000) average neg_loss: 0.3929813900589943
[proc 1][Train](5900/6000) average loss: 0.3302865487337112
[proc 1][Train](5900/6000) average regularization: 0.0017678673949558287
[proc 1][Train] 100 steps take 1.140 seconds

As we can see, using 4 GPUs we have almost 3x end-to-end performance speedup.

Note that --async_update can increase system performance but it could also slow down the model convergence.
So DGL-KE provides another option called --force_sync_interval that forces all GPU sync their model on
every N steps. For example, the following command will sync model across GPUs on every 1000 steps:

dglke_train --model_name TransE_l2 --dataset FB15k --batch_size 1000 --log_interval
→˓1000 \
--neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 \
--lr 0.25 --batch_size_eval 16 --test -adv --gpu 0 1 2 3 --async_update --max_step
→˓6000 --force_sync_interval 1000

Save embeddings

By default, dglke_train saves the embeddings in the ckpts folder. Each run creates a new folder in ckpts to
store the training results. The new folder is named after xxxx_yyyy_zz, where xxxx is the model name, yyyy is
the dataset name, zz is a sequence number that ensures a unique name for each run.

The saved embeddings are stored as numpy ndarrays. The node embedding is saved as XXX_YYY_entity.npy.
The relation embedding is saved as XXX_YYY_relation.npy. XXX is the dataset name and YYY is the model
name.

A user can disable saving embeddings with --no_save_emb. This might be useful for some cases, such as hyper-
parameter tuning.

2.3.4 Partition a Knowledge Graph

For distributed training, a user needs to partition a graph beforehand. DGL-KE provides a partition tool
dglke_partition, which partitions a given knowledge graph into N parts with the METIS partition algorithm.

30 Chapter 2. Get started with DGL-KE!

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

dglke Documentation, Release 0.1.0

This partition algorithm reduces the number of edge cuts between partitions to reduce network communication in the
distributed training. For a cluster of P machines, we usually split a graph into P partitions and assign a partition to a
machine as shown in the figure below.

Arguments

The command line provides the following arguments:

• --data_path DATA_PATH The name of the knowledge graph stored under data_path. If it is one ofthe
builtin knowledge grpahs such as FB15k, DGL-KE will automatically download the knowledge graph and keep
it under data_path.

• --dataset DATA_SET The name of the knowledge graph stored under data_path. If it is one of the builtin
knowledge grpahs such as FB15k, FB15k-237, wn18, wn18rr, and Freebase, DGL-KE will automati-
cally download the knowledge graph and keep it under data_path.

• --format FORMAT The format of the dataset. For builtin knowledge graphs, the format is determined au-
tomatically. For users own knowledge graphs, it needs to be raw_udd_{htr} or udd_{htr}. raw_udd_
indicates that the user’s data use raw ID for entities and relations and udd_ indicates that the user’s data uses
KGE ID. {htr} indicates the location of the head entity, tail entity and relation in a triplet. For example, htr
means the head entity is the first element in the triplet, the tail entity is the second element and the relation is
the last element.

• --data_files [DATA_FILES ...] A list of data file names. This is required for training KGE on their
own datasets. If the format is raw_udd_{htr}, users need to provide train_file [valid_file] [test_file]. If the
format is udd_{htr}, users need to provide entity_file relation_file train_file [valid_file] [test_file]. In both
cases, valid_file and test_file are optional.

• --delimiter DELIMITER Delimiter used in data files. Note all files should use the same delimiter.

• -k NUM_PARTS or --num-parts NUM_PARTS The number of partitions.

2.3.5 Distributed Training on Large Data

dglke_dist_train trains knowledge graph embeddings on a cluster of machines. DGL-KE adopts the parameter-
server architecture for distributed training.

2.3. DGL-KE Command Lines 31

dglke Documentation, Release 0.1.0

In this architecture, the entity embeddings and relation embeddings are stored in DGL KVStore. The trainer processes
pull the latest model from KVStore and push the calculated gradient to the KVStore to update the model. All the
processes trains the KG embeddings with asynchronous SGD.

Arguments

The command line provides the following arguments:

• --model_name {TransE, TransE_l1, TransE_l2, TransR, RESCAL, DistMult,
ComplEx, RotatE} The models provided by DGL-KE.

• --data_path DATA_PATH The path of the directory where DGL-KE loads knowledge graph data.

• --dataset DATA_SET The name of the knowledge graph stored under data_path. The knowledge graph
should be generated by Partition script.

• --format FORMAT The format of the dataset. For builtin knowledge graphs,the foramt should be built_in.
For users own knowledge graphs,it needs to be raw_udd_{htr} or udd_{htr}.

• --save_path SAVE_PATH The path of the directory where models and logs are saved.

• --no_save_emb Disable saving the embeddings under save_path.

• --max_step MAX_STEP The maximal number of steps to train the model in a single process. A step trains
the model with a batch of data. In the case of multiprocessing training, the total number of training steps is
MAX_STEP * NUM_PROC.

• --batch_size BATCH_SIZE The batch size for training.

• --batch_size_eval BATCH_SIZE_EVAL The batch size used for validation and test.

• --neg_sample_size NEG_SAMPLE_SIZE The number of negative samples we use for each positive sam-
ple in the training.

32 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

• --neg_deg_sample Construct negative samples proportional to vertex degree in the training. When this
option is turned on, the number of negative samples per positive edge will be doubled. Half of the negative
samples are generated uniformly whilethe other half are generated proportional to vertex degree.

• --neg_deg_sample_eval Construct negative samples proportional to vertex degree in the evaluation.

• --neg_sample_size_eval NEG_SAMPLE_SIZE_EVAL The number of negative samples we use to
evaluate a positive sample.

• --eval_percent EVAL_PERCENT Randomly sample some percentage of edges for evaluation.

• --no_eval_filter Disable filter positive edges from randomly constructed negative edges for evaluation.

• -log LOG_INTERVAL Print runtime of different components every x steps.

• --test Evaluate the model on the test set after the model is trained.

• --num_proc NUM_PROC The number of processes to train the model in parallel.

• --num_thread NUM_THREAD The number of CPU threads to train the model in each process. This argu-
ment is used for multi-processing training.

• --force_sync_interval FORCE_SYNC_INTERVAL We force a synchronization between processes
every x steps formultiprocessing training. This potentially stablizes the training processto get a better per-
formance. For multiprocessing training, it is set to 1000 by default.

• --hidden_dim HIDDEN_DIM The embedding size of relation and entity.

• --lr LR The learning rate. DGL-KE uses Adagrad to optimize the model parameters.

• -g GAMMA or --gamma GAMMA The margin value in the score function. It is used by TransX and RotatE.

• -de or --double_ent Double entitiy dim for complex number It is used by RotatE.

• -dr or --double_rel Double relation dim for complex number.

• -adv or --neg_adversarial_sampling Indicate whether to use negative adversarial sampling.It will
weight negative samples with higher scores more.

• -a ADVERSARIAL_TEMPERATURE or --adversarial_temperature
ADVERSARIAL_TEMPERATURE The temperature used for negative adversarial sampling.

• -rc REGULARIZATION_COEF or --regularization_coef REGULARIZATION_COEF The coeffi-
cient for regularization.

• -rn REGULARIZATION_NORM or --regularization_norm REGULARIZATION_NORM norm used
in regularization.

• --path PATH Path of distributed workspace.

• --ssh_key SSH_KEY ssh private key.

• --ip_config IP_CONFIG Path of IP configuration file.

• --num_client_proc NUM_CLIENT_PROC Number of worker processes on each machine.

The Steps for Distributed Training

Distributed training on DGL-KE usually involves three steps:

1. Partition a knowledge graph.

2. Copy partitioned data to remote machines.

3. Invoke the distributed training job by dglke_dist_train.

2.3. DGL-KE Command Lines 33

dglke Documentation, Release 0.1.0

Here we demonstrate how to training KG embedding on FB15k dataset using 4 machines. Note that, the FB15k is
just a small dataset as our toy demo. An interested user can try it on Freebase, which contains 86M nodes and
338M edges.

Step 1: Prepare your machines

Assume that we have four machines with the following IP addresses:

machine_0: 172.31.24.245
machine_1: 172.31.24.246
machine_2: 172.31.24.247
machine_3: 172.32.24.248

Make sure that machine_0 has the permission to ssh to all the other machines.

Step 2: Prepare your data

Create a new directory called my_task on machine_0:

mkdir my_task

We use built-in FB15k as demo and paritition it into 4 parts:

dglke_partition --dataset FB15k -k 4 --data_path ~/my_task

Note that, in this demo, we have 4 machines so we set -k to 4. After this step, we can see 4 new directories called
partition_0, partition_1, partition_2, and partition_3 in your FB15k dataset folder.

Create a new file called ip_config.txt in my_task, and write the following contents into it:

172.31.24.245 30050 8
172.31.24.246 30050 8
172.31.24.247 30050 8
172.32.24.248 30050 8

Each line in ip_config.txt is the KVStore configuration on each machine. For example, 172.31.24.245
30050 8 represents that, on machine_0, the IP is 172.31.24.245, the base port is 30050, and we start 8
servers on this machine. Note that, you can change the number of servers on each machine based on your machine
capabilities. In our environment, the instance has 48 cores, and we set 8 cores to KVStore and 40 cores for worker
processes.

After that, we can copy the my_task directory to all the remote machines:

scp -r ~/my_task 172.31.24.246:~
scp -r ~/my_task 172.31.24.247:~
scp -r ~/my_task 172.31.24.248:~

Step 3: Launch distributed jobs

Run the following command on machine_0 to start a distributed task:

dglke_dist_train --path ~/my_task --ip_config ~/my_task/ip_config.txt \
--num_client_proc 16 --model_name TransE_l2 --dataset FB15k --data_path ~/my_task --
→˓hidden_dim 400 \
--gamma 19.9 --lr 0.25 --batch_size 1000 --neg_sample_size 200 --max_step 500 --log_
→˓interval 100 \
--batch_size_eval 16 --test -adv --regularization_coef 1.00E-09 --num_thread 1

Most of the options we have already seen in previous sections. Here are some new options we need to know.

--path indicates the absolute path of our workspace. All the logs and trained embedding will be stored in this path.

34 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

--ip_config is the absolute path of ip_config.txt.

--num_client_proc has the same behaviors to --num_proc in single-machine training.

All the other options are the same as single-machine training. For some EC2 users, you can also set --ssh_key for
right ssh permission.

If you don’t set --no_save_embed option. The trained KG embeddings will be stored in machine_0/
my_task/ckpts by default.

2.3.6 Evaluation on Pre-Trained Embeddings

dglke_eval reads the pre-trained embeddings and evaluates the quality of the embeddings with a link prediction
task on the test set.

Arguments

The command line provides the following arguments:

• --model_name {TransE, TransE_l1, TransE_l2, TransR, RESCAL, DistMult,
ComplEx, RotatE} The models provided by DGL-KE.

• --data_path DATA_PATH The name of the knowledge graph stored under data_path. If it is one ofthe
builtin knowledge grpahs such as FB15k, DGL-KE will automatically download the knowledge graph and keep
it under data_path.

• --dataset DATASET The name of the knowledge graph stored under data_path. If it is one ofthe builtin
knowledge grpahs such as FB15k, DGL-KE will automatically download the knowledge graph and keep it under
data_path.

• --format FORMAT The format of the dataset. For builtin knowledge graphs, the format is determined au-
tomatically. For users own knowledge graphs, it needs to be raw_udd_{htr} or udd_{htr}. raw_udd_
indicates that the user’s data use raw ID for entities and relations and udd_ indicates that the user’s data uses
KGE ID. {htr} indicates the location of the head entity, tail entity and relation in a triplet. For example, htr
means the head entity is the first element in the triplet, the tail entity is the second element and the relation is
the last element.

• --data_files [DATA_FILES ...] A list of data file names. This is used if users want to train KGE on
their own datasets. If the format is raw_udd_{htr}, users need to provide train_file [valid_file] [test_file]. If the
format is udd_{htr}, users need to provide entity_file relation_file train_file [valid_file] [test_file]. In both cases,
valid_file and test_file are optional.

• --delimiter DELIMITER Delimiter used in data files. Note all files should use the same delimiter.

• --model_path MODEL_PATH The place where models are saved.

• --batch_size_eval BATCH_SIZE_EVAL Batch size used for eval and test

• --neg_sample_size_eval NEG_SAMPLE_SIZE_EVAL Negative sampling size for testing

• --neg_deg_sample_eval Negative sampling proportional to vertex degree for testing.

• --hidden_dim HIDDEN_DIM Hidden dim used by relation and entity

• -g GAMMA or --gamma GAMMA The margin value in the score function. It is used by TransX and RotatE.

• --eval_percent EVAL_PERCENT Randomly sample some percentage of edges for evaluation.

• --no_eval_filter Disable filter positive edges from randomly constructed negative edges for evaluation.

• --gpu [GPU ...] A list of gpu ids, e.g. 0 1 2 4

2.3. DGL-KE Command Lines 35

dglke Documentation, Release 0.1.0

• --mix_cpu_gpu Training a knowledge graph embedding model with both CPUs and GPUs.The embeddings
are stored in CPU memory and the training is performed in GPUs.This is usually used for training a large
knowledge graph embeddings.

• -de or --double_ent Double entitiy dim for complex number It is used by RotatE.

• -dr or --double_rel Double relation dim for complex number.

• --num_proc NUM_PROC The number of processes to train the model in parallel.In multi-GPU training, the
number of processes by default is set to match the number of GPUs. If set explicitly, the number of processes
needs to be divisible by the number of GPUs.

• --num_thread NUM_THREAD The number of CPU threads to train the model in each process. This argu-
ment is used for multi-processing training.

Examples

The following command evaluates the pre-trained KG embedding on multi-cores:

dglke_eval --model_name TransE_l2 --dataset FB15k --hidden_dim 400 --gamma 19.9 --
→˓batch_size_eval 16 \
--num_thread 1 --num_proc 8 --model_path ~/my_task/ckpts/TransE_l2_FB15k_0/

We can also use GPUs in our evaluation tasks:

dglke_eval --model_name TransE_l2 --dataset FB15k --hidden_dim 400 --gamma 19.9 --
→˓batch_size_eval 16 \
--gpu 0 1 2 3 4 5 6 7 --model_path ~/my_task/ckpts/TransE_l2_FB15k_0/

2.3.7 Predict entities/relations in triplets

dglke_predict predicts missing entities or relations in a triplet. Blow shows an example that predicts top 5 most likely
destination entities for every given source node and relation:

src rel dst score
1 0 12 -5.11393
1 0 18 -6.10925
1 0 13 -6.66778
1 0 17 -6.81532
1 0 19 -6.83329
2 0 17 -5.09325
2 0 18 -5.42972
2 0 20 -5.61894
2 0 12 -5.75848
2 0 14 -5.94183

Currently, it supports six models: TransE_l1, TransE_l2, RESCAL, DistMult, ComplEx, and RotatE.

Arguments

Four arguments are required to provide basic information for predicting missing entities or relations:

• --model_path, The path containing the pretrained model, including the embedding files (.npy) and a con-
fig.json containing the configuration of training the model.

36 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

• --format, The format of the input data, specified in h_r_t. Ideally, user should provides three files, one for
head entities, one for relations and one for tail entities. But we also allow users to use * to represent all of the
entities or relations. For example, h_r_* requires users to provide files containing head entities and relation
entities and use all entities as tail entities; *_*_t requires users to provide a single file containing tail entities
and use all entities as head entities and all relations. The supported formats include h_r_t, h_r_*, h_*_t,
*_r_t, h_*_*, *_r_*, *_*_t.

• --data_files A list of data file names. This is used to provide necessary files containing the input data
according to the format, e.g., for h_r_t, the three input files are required and they contain a list of head
entities, a list of relations and a list of tail entities. For h_*_t, two files are required, which contain a list of
head entities and a list of tail entities.

• --raw_data, A flag indicates whether the input data specified by –data_files use the raw Ids or KGE Ids. If
True, the input data uses Raw IDs and the command translates IDs according to ID mapping. If False, the data
use KGE IDs. Default False.

Task related arguments:

• --exec_mode, How to calculate scores for triplets and calculate topK. Default ‘all’.

– triplet_wise: head, relation and tail lists have the same length N, and we calculate the similarity
triplet by triplet: result = topK([score(h_i, r_i, t_i) for i in N]), the result shape will be (K,).

– all: three lists of head, relation and tail ids are provided as H, R and T, and we calculate all possible
combinations of all triplets (h_i, r_j, t_k): result = topK([[[score(h_i, r_j, t_k) for each h_i in H] for each
r_j in R] for each t_k in T]), and find top K from the triplets

– batch_head: three lists of head, relation and tail ids are provided as H, R and T, and we calculate topK
for each element in head: result = topK([[score(h_i, r_j, t_k) for each r_j in R] for each t_k in T]) for each
h_i in H. It returns (sizeof(H) * K) triplets.

– batch_rel: three lists of head, relation and tail ids are provided as H, R and T, and we calculate topK
for each element in relation: result = topK([[score(h_i, r_j, t_k) for each h_i in H] for each t_k in T]) for
each r_j in R. It returns (sizeof(R) * K) triplets.

– batch_tail: three lists of head, relation and tail ids are provided as H, R and T, and we calculate topK
for each element in tail: result = topK([[score(h_i, r_j, t_k) for each h_i in H] for each r_j in R]) for each
t_k in T. It returns (sizeof(T) * K) triplets.

• --topk, How many results are returned. Default: 10.

• --score_func, What kind of score is used in ranking. Currently, we support two functions: none (score =
x) and logsigmoid ($score = log(sigmoid(x))$). Default: ‘none’.

• --gpu, GPU device to use in inference. Default: -1 (CPU)

Input/Output related arguments:

• --output, the output file to store the result. By default it is stored in result.tsv

• --entity_mfile, The entity ID mapping file. Required if Raw ID is used.

• --rel_mfile, The relation ID mapping file. Required if Raw ID is used.

Examples

The following command predicts the K most likely relations and tail entities for each head entity in the list using a
pretrained TransE_l2 model (–exec_mode ‘batch_head’). In this example, the candidate relations and the candidate
tail entities are given by the user.:

2.3. DGL-KE Command Lines 37

dglke Documentation, Release 0.1.0

Using PyTorch Backend
dglke_predict --model_path ckpts/TransE_l2_wn18_0/ --format 'h_r_t' --data_files head.
→˓list rel.list tail.list --score_func logsigmoid --topK 5 --exec_mode 'batch_head'

Using MXNet Backend
MXNET_ENGINE_TYPE=NaiveEngine DGLBACKEND=mxnet dglke_predict --model_path ckpts/
→˓TransE_l2_wn18_0/ --format 'h_r_t' --data_files head.list rel.list tail.list --
→˓score_func logsigmoid --topK 5 --exec_mode 'batch_head'

The output is as:

src rel dst score
1 0 12 -5.11393
1 0 18 -6.10925
1 0 13 -6.66778
1 0 17 -6.81532
1 0 19 -6.83329
2 0 17 -5.09325
2 0 18 -5.42972
2 0 20 -5.61894
2 0 12 -5.75848
2 0 14 -5.94183
...

The following command finds the most likely combinations of head entities, relations and tail entities from the input
lists using a pretrained DistMult model:

Using PyTorch Backend
dglke_predict --model_path ckpts/DistMult_wn18_0/ --format 'h_r_t' --data_files head.
→˓list rel.list tail.list --score_func none --topK 5

Using MXNet Backend
MXNET_ENGINE_TYPE=NaiveEngine DGLBACKEND=mxnet dglke_predict --model_path ckpts/
→˓DistMult_wn18_0/ --format 'h_r_t' --data_files head.list rel.list tail.list --score_
→˓func none --topK 5

The output is as:

src rel dst score
6 0 15 -2.39380
8 0 14 -2.65297
2 0 14 -2.67331
9 0 18 -2.86985
8 0 20 -2.89651

The following command finds the most likely combinations of head entities, relations and tail entities from the input
lists using a pretrained TransE_l2 model and uses Raw ID (turn on –raw_data):

Using PyTorch Backend
dglke_predict --model_path ckpts/TransE_l2_wn18_0/ --format 'h_r_t' --data_files raw_
→˓head.list raw_rel.list raw_tail.list --topK 5 --raw_data --entity_mfile data/wn18/
→˓entities.dict --rel_mfile data/wn18/relations.dict

Using MXNet Backend
MXNET_ENGINE_TYPE=NaiveEngine DGLBACKEND=mxnet dglke_predict --model_path ckpts/
→˓TransE_l2_wn18_0/ --format 'h_r_t' --data_files raw_head.list raw_rel.list raw_tail.
→˓list --topK 5 --raw_data --entity_mfile data/wn18/entities.dict --rel_mfile data/
→˓wn18/relations.dict (continues on next page)

38 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

(continued from previous page)

The output is as:

head rel tail score
08847694 _derivationally_related_form 09440400 -7.41088
08847694 _hyponym 09440400 -8.99562
02537319 _derivationally_related_form 01490112 -9.08666
02537319 _hyponym 01490112 -9.44877
00083809 _derivationally_related_form 05940414 -9.88155

2.3.8 Find similar embeddings

dglke_emb_sim finds the most similar entity/relation embeddings for some pre-defined similarity functions given a set
of entities or relations. An example of the output for top5 similar entities are as follows:

left right score
0 0 0.99999
0 18470 0.91855
0 2105 0.89916
0 13605 0.83187
0 36762 0.76978

Currently we support five different similarity functions: cosine, l2 distance, l1 distance, dot product and extended
jaccard.

Arguments

Four arguments are required to provide basic information for finding similar embeddings:

• --emb_file, The numpy file that contains the embeddings of all entities/relations in a knowledge graph.

• --format, The format of the input objects (entities/relations).

– l_r: two list of objects are provided as left objects and right objects.

– l_*: one list of objects is provided as left objects and all objects in emb_file are right objects. This is to
find most similar objects to the ones on the left.

– *_r: one list of objects is provided as right objects list and treat all objects in emb_file as left objects.

– *: all objects in the emb_file are both left objects and right objects. The option finds the most similar
objects in the graph.

• --data_files A list of data file names. It provides necessary files containing the requried data according to
the format, e.g., for l_r, two files are required as left_data and right_data, while for l_*, one file is required
as left_data, and for * this argument will be omited.

• --raw_data, A flag indicates whether the data in data_files are raw IDs or KGE IDs. If True, the data are the
Raw IDs and the command will map the raw IDs to KGE Ids automatically using the ID mapping file provided
through --mfile. If False, the data are KGE IDs. Default: False.

Task related arguments:

• --exec_mode, Indicate how to calculate scores for element pairs and calculate topK. Default: ‘all’

– pairwise: The same number (N) of left and right objects are provided. It calculates the similarity pair
by pair: result = topK([score(l_i, r_i) for i in N]) and output the K most similar pairs.

2.3. DGL-KE Command Lines 39

dglke Documentation, Release 0.1.0

– all: both left objects and right objects are provided as L and R. It calculates similarity scores of all
possible combinations of (l_i, r_j): result = topK([[score(l_i, rj) for l_i in L] for r_j in R]), and outputs the
K most similar pairs.

– batch_left: left objects and right objects are provided as L and R. It finds the K most similar objects
from the right objects for each object in L: result = topK([score(l_i, r_j) for r_j in R]) for l_j in L. It outputs
(len(L) * K) most similar pairs.

• --topk, How many results are returned. Default: 10.

• --sim_func, the function to define the similarity score between a pair of objects. It support five functions.
Default: cosine

– cosine: use cosine similarity; score = $frac{x cdot y}{||x||_2||y||_2}$

– l2: use l2 similarity; score = $-||x - y||_2$

– l1: use l1 similarity; score = $-||x - y||_1$

– dot: use dot product similarity; score = $x cdot y$

– ext_jaccard: use extended jaccard similarity. score = $frac{x cdot y}{||x||_{2}^{2} + ||y||_{2}^{2} - x
cdot y}$

• --gpu, GPU device to use in inference. Default: -1 (CPU).

Input/Output related arguments:

• --output, the output file that stores the result. By default it is stored in result.tsv.

• --mfile, The ID mapping file.

Examples

The following command finds similar entities based on cosine distance:

Using PyTorch Backend
dglke_emb_sim --emb_file ckpts/TransE_l2_wn18_0/wn18_TransE_l2_entity.npy --format 'l_
→˓r' --data_files head.list tail.list --topK 5

Using MXNet Backend
MXNET_ENGINE_TYPE=NaiveEngine DGLBACKEND=mxnet dglke_emb_sim --emb_file ckpts/TransE_
→˓l2_wn18_0/wn18_TransE_l2_entity.npy --format 'l_r' --data_files head.list tail.list
→˓--topK 5

The output is as:

left right score
6 15 0.55512
1 12 0.33153
7 20 0.27706
7 19 0.25631
7 13 0.21372

The following command finds topK most similar entities for each element on the left using l2 distance (–exec_mode
batch_left):

Using PyTorch Backend
dglke_emb_sim --emb_file ckpts/TransE_l2_wn18_0/wn18_TransE_l2_entity.npy --format 'l_
→˓*' --data_files head.list --sim_func l2 --topK 5 --exec_mode 'batch_left'

(continues on next page)

40 Chapter 2. Get started with DGL-KE!

dglke Documentation, Release 0.1.0

(continued from previous page)

Using MXNet Backend
MXNET_ENGINE_TYPE=NaiveEngine DGLBACKEND=mxnet dglke_emb_sim --emb_file ckpts/TransE_
→˓l2_wn18_0/wn18_TransE_l2_entity.npy --format 'l_*' --data_files head.list --sim_
→˓func l2 --topK 5 --exec_mode 'batch_left'

The output is as:

left right score
0 0 0.0
0 18470 3.1008
0 24408 3.1466
0 2105 3.3411
0 13605 4.1587
1 1 0.0
1 26231 4.9025
1 2617 5.0204
1 12672 5.2221
1 38633 5.3221
...

The following command finds similar relations using cosine distance and use Raw ID (turn on –raw_data):

Using PyTorch Backend
dglke_emb_sim --mfile data/wn18/relations.dict --emb_file ckpts/TransE_l2_wn18_0/wn18_
→˓TransE_l2_relation.npy --format 'l_*' --data_files raw_rel.list --topK 5 --raw_data

Using MXNet Backend
MXNET_ENGINE_TYPE=NaiveEngine DGLBACKEND=mxnet dglke_emb_sim --mfile data/wn18/
→˓relations.dict --emb_file ckpts/TransE_l2_wn18_0/wn18_TransE_l2_relation.npy --
→˓format 'l_*' --data_files raw_rel.list --topK 5 --raw_data

The output is as:

left right score
_hyponym _hyponym 0.99999
_derivationally_related_form _derivationally_related_form 0.99999
_hyponym _also_see 0.58408
_hyponym _member_of_domain_topic 0.44027
_hyponym _member_of_domain_region 0.30975

2.3.9 Commands for Training

DGL-KE provides commands to support training on CPUs, GPUs in a single machine and a cluster of machines.

dglke_train trains KG embeddings on CPUs or GPUs in a single machine and saves the trained node embeddings
and relation embeddings on disks.

dglke_dist_train trains knowledge graph embeddings on a cluster of machines. This command launches a set
of processes to perform distributed training automatically.

To support distributed training, DGL-KE provides a command to partition a knowledge graph before training.

dglke_partition partitions the given knowledge graph into N parts by the METIS partition algorithm. Different
partitions will be stored on different machines in distributed training. You can find more details about the METIS
partition algorithm in this link.

In addition, DGL-kE provides a command to evaluate the quality of pre-trained embeddings.

2.3. DGL-KE Command Lines 41

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

dglke Documentation, Release 0.1.0

dglke_eval reads the pre-trained embeddings and evaluates the quality of the embeddings with a link prediction
task on the test set.

2.3.10 Commands for Inference

DGL-KE supports two types of inference tasks using pretained embeddings (We recommand using DGL-KE to gen-
erate these embedding).

• Predicting entities/relations in a triplet Given entities and/or relations, predict which entities or relations are
likely to connect with the existing entities for given relations. For example, given a head entity and a relation,
predict which entities are likely to connect to the head entity via the given relation.

• Finding similar embeddings Given entity/relation embeddings, find the most similar entity/relation embed-
dings for some pre-defined similarity functions.

The ranking result will be automatically stored in the output file (result.tsv by default) using the tsv format. DGL-KE
provides two commands for the inference tasks:

dglke_predict predicts missing entities/relations in triplets using the pre-trained embeddings.

dglke_emb_sim computes similarity scores on the entity embeddings or relation embeddings.

2.4 Benchmarks on Built-in Knowledage Graphs

DGL-KE provides five built-in knowledge graphs:

Dataset #nodes #edges #relations
FB15k 14951 592213 1345
FB15k-237 14541 310116 237
wn18 40943 151442 18
wn18rr 40943 93003 11
Freebase 86054151 338586276 14824

Users can specify one of the datasets with --dataset option in their tasks.

DGL-KE provides benchmark results on FB15k, wn18, as well as Freebase. Users can go to the corresponded
folder to check out the scripts and results. All the benchmark results are done by AWS EC2. For multi-cpu and
distributed training, the target instance is r5dn.24xlarge, which has 48 CPU cores and 768 GB memory. Also,
r5dn.xlarge has 100Gbit network throughput, which is powerful for distributed training. For GPU training, our
target instance is p3.16xlarge, which has 64 CPU cores and 8 Nvidia v100 GPUs. For users, you can choose your
own instance by your demand and tune the hyper-parameters for the best performance.

All the scripts can be found on this page.

2.4.1 FB15k

One-GPU training

42 Chapter 2. Get started with DGL-KE!

https://github.com/awslabs/dgl-ke/tree/master/examples

dglke Documentation, Release 0.1.0

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 47.34 0.672 0.557 0.763 0.849 201
TransE_l2 47.04 0.649 0.525 0.746 0.844 167
DistMult 61.43 0.696 0.586 0.782 0.873 150
ComplEx 64.73 0.757 0.672 0.826 0.886 171
RESCAL 124.5 0.661 0.589 0.704 0.787 1252
TransR 59.99 0.670 0.585 0.728 0.808 530
RotatE 43.85 0.726 0.632 0.799 0.873 1405

8-GPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 48.59 0.662 0.542 0.756 0.846 53
TransE_l2 47.52 0.627 0.492 0.733 0.838 49
DistMult 59.44 0.679 0.566 0.764 0.864 47
ComplEx 64.98 0.750 0.668 0.814 0.883 49
RESCAL 133.3 0.643 0.570 0.685 0.773 179
TransR 66.51 0.666 0.581 0.724 0.803 90
RotatE 50.04 0.685 0.581 0.763 0.851 120

Multi-CPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 48.32 0.645 0.521 0.741 0.838 140
TransE_l2 45.28 0.633 0.501 0.735 0.840 58
DistMult 62.63 0.647 0.529 0.733 0.846 58
ComplEx 67.83 0.694 0.590 0.772 0.863 69

Distributed training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 38.26 0.691 0.591 0.765 0.853 104
TransE_l2 34.84 0.645 0.510 0.754 0.854 31
DistMult 51.85 0.661 0.532 0.762 0.864 57
ComplEx 62.52 0.667 0.567 0.737 0.836 65

2.4.2 wn18

One-GPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 355.4 0.764 0.602 0.928 0.949 327
TransE_l2 209.4 0.560 0.306 0.797 0.943 223
DistMult 419.0 0.813 0.702 0.921 0.948 133
ComplEx 318.2 0.932 0.914 0.948 0.959 144
RESCAL 563.6 0.848 0.792 0.898 0.928 308
TransR 432.8 0.609 0.452 0.736 0.850 906
RotatE 451.6 0.944 0.940 0.945 0.950 671

2.4. Benchmarks on Built-in Knowledage Graphs 43

dglke Documentation, Release 0.1.0

8-GPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 348.8 0.739 0.553 0.927 0.948 111
TransE_l2 198.9 0.559 0.305 0.798 0.942 71
DistMult 798.8 0.806 0.705 0.903 0.932 66
ComplEx 535.0 0.938 0.931 0.944 0.949 53
RotatE 487.7 0.943 0.939 0.945 0.951 127

Multi-CPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 376.3 0.593 0.264 0.926 0.949 925
TransE_l2 218.3 0.528 0.259 0.777 0.939 210
DistMult 837.4 0.791 0.675 0.904 0.933 362
ComplEx 806.3 0.904 0.881 0.926 0.937 281

Distributed training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l1 136.0 0.848 0.768 0.927 0.950 759
TransE_l2 85.04 0.797 0.672 0.921 0.958 144
DistMult 278.5 0.872 0.816 0.926 0.939 275
ComplEx 333.8 0.838 0.796 0.870 0.906 273

2.4.3 Freebase

8-GPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l2 23.56 0.736 0.663 0.782 0.873 4767
DistMult 46.19 0.833 0.813 0.842 0.869 4281
ComplEx 46.70 0.834 0.815 0.843 0.869 8356
TransR 49.68 0.696 0.653 0.716 0.773 14235
RotatE 93.20 0.769 0.748 0.779 0.804 9060

Multi-CPU training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l2 30.82 0.815 0.766 0.848 0.902 6993
DistMult 44.16 0.834 0.815 0.843 0.869 7146
ComplEx 45.62 0.835 0.817 0.843 0.870 8732

Distributed training

Models MR MRR HITS-1 HITS-3 HITS-10 TIME
TransE_l2 34.25 0.764 0.705 0.802 0.869 1633
DistMult 75.15 0.769 0.751 0.779 0.801 1679
ComplEx 77.83 0.771 0.754 0.779 0.802 2293

44 Chapter 2. Get started with DGL-KE!

	Performance and Scalability
	Get started with DGL-KE!
	Installation Guide
	Introduction to Knowledge Graph Embedding
	DGL-KE Command Lines
	Benchmarks on Built-in Knowledage Graphs

